
Rita C Tostes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11301611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Testosterone Contributes to Vascular Dysfunction in Young Mice Fed a High Fat Diet by Promoting Nuclear Factor E2–Related Factor 2 Downregulation and Oxidative Stress. Frontiers in Physiology, 2022, 13, 837603.	1.3	3
2	Melatonin regulates antioxidant defense and inflammatory response by activating Nrf2–dependent mechanisms and inhibiting NFkappaB expression in middle-aged T. cruzi infected rats. Experimental Gerontology, 2022, 167, 111895.	1.2	6
3	Dissecting the interaction between HSP70 and vascular contraction: role of \$\$hbox{Ca}^{2+}\$\$ handling mechanisms. Scientific Reports, 2021, 11, 1420.	1.6	9
4	Vascular Stress Signaling in Hypertension. Circulation Research, 2021, 128, 969-992.	2.0	24
5	Aldosterone Negatively Regulates Nrf2 Activity: An Additional Mechanism Contributing to Oxidative Stress and Vascular Dysfunction by Aldosterone. International Journal of Molecular Sciences, 2021, 22, 6154.	1.8	8
6	Antioxidant and antihypertensive responses to oral nitrite involves activation of the Nrf2 pathway. Free Radical Biology and Medicine, 2019, 141, 261-268.	1.3	29
7	Atorvastatin inhibits pro-inflammatory actions of aldosterone in vascular smooth muscle cells by reducing oxidative stress. Life Sciences, 2019, 221, 29-34.	2.0	25
8	Nrf2 as a Potential Mediator of Cardiovascular Risk in Metabolic Diseases. Frontiers in Pharmacology, 2019, 10, 382.	1.6	128
9	Upregulation of Nrf2 and Decreased Redox Signaling Contribute to Renoprotective Effects of Chemerin Receptor Blockade in Diabetic Mice. International Journal of Molecular Sciences, 2018, 19, 2454.	1.8	19
10	Angeli's Salt, a nitroxyl anion donor, reverses endothelin-1 mediated vascular dysfunction in murine aorta. European Journal of Pharmacology, 2017, 814, 294-301.	1.7	5
11	Internal Pudental Artery Dysfunction in Diabetes Mellitus Is Mediated by NOX1-Derived ROS-, Nrf2-, and Rho Kinase–Dependent Mechanisms. Hypertension, 2016, 68, 1056-1064.	1.3	30
12	Reactive oxygen species: players in the cardiovascular effects of testosterone. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1-R14.	0.9	53
13	Role of the endothelin system in sexual dimorphism in cardiovascular and renal diseases. Life Sciences, 2016, 159, 20-29.	2.0	35
14	Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling. Frontiers in Physiology, 2015, 6, 269.	1.3	31
15	Testosterone induces leucocyte migration by NADPH oxidase-driven ROS- and COX2-dependent mechanisms. Clinical Science, 2015, 129, 39-48.	1.8	40
16	Diabetes impairs the vascular effects of aldosterone mediated by G protein-coupled estrogen receptor activation. Frontiers in Pharmacology, 2015, 6, 34.	1.6	23
17	Downregulation of Nuclear Factor Erythroid 2–Related Factor and Associated Antioxidant Genes Contributes to Redox-Sensitive Vascular Dysfunction in Hypertension. Hypertension, 2015, 66, 1240-1250.	1.3	109
18	An Interaction of Renin-Angiotensin and Kallikrein-Kinin Systems Contributes to Vascular Hypertrophy in Angiotensin II-Induced Hypertension: In Vivo and In Vitro Studies. PLoS ONE, 2014, 9, e111117.	1.1	31

RITA C TOSTES

#	Article	IF	CITATIONS
19	The involvement of aldosterone on vascular insulin resistance: implications in obesity and type 2 diabetes. Diabetology and Metabolic Syndrome, 2014, 6, 90.	1.2	35
20	Testosterone induces apoptosis in vascular smooth muscle cells via extrinsic apoptotic pathway with mitochondria-generated reactive oxygen species involvement. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1485-H1494.	1.5	71
21	Emerging Role of Angiotensin Type 2 Receptor (AT2R)/Akt/NO Pathway in Vascular Smooth Muscle Cell in the Hyperthyroidism. PLoS ONE, 2013, 8, e61982.	1.1	29
22	Differential Modulation of Nitric Oxide Synthases in Aging: Therapeutic Opportunities. Frontiers in Physiology, 2012, 3, 218.	1.3	92
23	O-GlcNAcylation and oxidation of proteins: is signalling in the cardiovascular system becoming sweeter?. Clinical Science, 2012, 123, 473-486.	1.8	44
24	Testosterone Induces Vascular Smooth Muscle Cell Migration by NADPH Oxidase and c-Src–Dependent Pathways. Hypertension, 2012, 59, 1263-1271.	1.3	85
25	STIM1/Orai1 contributes to sex differences in vascular responses to calcium in spontaneously hypertensive rats. Clinical Science, 2012, 122, 215-226.	1.8	23
26	mTOR Inhibition: A Promise for a Young Heart. Frontiers in Physiology, 2012, 3, 31.	1.3	2
27	Mitochondrial aldehyde dehydrogenase prevents ROS-induced vascular contraction in angiotensin-II hypertensive mice. Journal of the American Society of Hypertension, 2011, 5, 154-160.	2.3	38
28	Augmented S-nitrosylation contributes to impaired relaxation in angiotensin II hypertensive mouse aorta. Journal of Hypertension, 2011, 29, 2359-2368.	0.3	31
29	Receptor and nonreceptor tyrosine kinases in vascular biology of hypertension. Current Opinion in Nephrology and Hypertension, 2010, 19, 169-176.	1.0	17
30	STIM and Orai proteins: players in sexual differences in hypertension-associated vascular dysfunction?. Clinical Science, 2010, 118, 391-396.	1.8	12
31	Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovascular Research, 2010, 85, 560-570.	1.8	122
32	Does Na+ really play a role in Ca2+ homeostasis in hypertension?. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H602-H604.	1.5	6
33	Increased Activation of Stromal Interaction Molecule-1/Orai-1 in Aorta From Hypertensive Rats. Hypertension, 2009, 53, 409-416.	1.3	86
34	TNF-α Knockout Mice Have Increased Corpora Cavernosa Relaxation. Journal of Sexual Medicine, 2009, 6, 115-125.	0.3	42
35	TNFâ€Î± Infusion Impairs Corpora Cavernosa Reactivity. Journal of Sexual Medicine, 2009, 6, 311-319.	0.3	33
36	O-GlcNAcylation: a novel post-translational mechanism to alter vascular cellular signaling in health and disease: focus on hypertension, Journal of the American Society of Hypertension, 2009, 3, 374-387	2.3	39

RITA C TOSTES

#	Article	IF	CITATIONS
37	Cigarette Smoking and Erectile Dysfunction: Focus on NO Bioavailability and ROS Generation. Journal of Sexual Medicine, 2008, 5, 1284-1295.	0.3	84
38	Therapeutic targets in hypertension: is there a place for antagonists of the most potent vasoconstrictors?. Expert Opinion on Therapeutic Targets, 2008, 12, 327-339.	1.5	15
39	DOCA-salt treatment enhances responses to endothelin-1 in murine corpus cavernosumThis article is one of a selection of papers published in the special issue (part 1 of 2) on Forefronts in Endothelin Canadian Journal of Physiology and Pharmacology, 2008, 86, 320-328.	0.7	27
40	Endothelin, sex and hypertension. Clinical Science, 2008, 114, 85-97.	1.8	64
41	Targets for the Treatment of Erectile Dysfunction: Is NO/cGMP Still the Answer?. Recent Patents on Cardiovascular Drug Discovery, 2007, 2, 119-132.	1.5	27
42	Endothelin-1-induced oxidative stress in DOCA-salt hypertension involves NADPH-oxidase-independent mechanisms. Clinical Science, 2006, 110, 243-253.	1.8	107
43	Aldosterone Activates Vascular p38MAP Kinase and NADPH Oxidase Via c-Src. Hypertension, 2005, 45, 773-779.	1.3	220
44	c-Src–Dependent Nongenomic Signaling Responses to Aldosterone Are Increased in Vascular Myocytes From Spontaneously Hypertensive Rats. Hypertension, 2005, 46, 1032-1038.	1.3	89
45	ET A Receptor Mediates Altered Leukocyte-Endothelial Cell Interaction and Adhesion Molecules Expression in DOCA–Salt Rats. Hypertension, 2004, 43, 872-879.	1.3	53
46	Contribution of the endothelin and renin-angiotensin systems to the vascular changes in rats chronically treated with ouabain. British Journal of Pharmacology, 2004, 143, 794-802.	2.7	21
47	ET A Receptor Blockade Decreases Vascular Superoxide Generation in DOCA-Salt Hypertension.	1.3	134