Anna Colell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/113016/publications.pdf

Version: 2024-02-01

1			50244	ϵ	59214
ı	77	8,636	46		77
ı	papers	citations	h-index		g-index
ı					
	83	83	83		10987
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Hepatocellular Carcinoma: Molecular Pathogenesis and Therapeutic Advances. Cancers, 2022, 14, 621.	1.7	34
2	Mitochondrial Oxidative and Nitrosative Stress as a Therapeutic Target in Diseases. Antioxidants, 2021, 10, 314.	2.2	8
3	Cholesterol alters mitophagy by impairing optineurin recruitment and lysosomal clearance in Alzheimer's disease. Molecular Neurodegeneration, 2021, 16, 15.	4.4	37
4	Upregulation of brain cholesterol levels inhibits mitophagy in Alzheimer disease. Autophagy, 2021, 17, 1555-1557.	4.3	22
5	Antioxidants Threaten Multikinase Inhibitor Efficacy against Liver Cancer by Blocking Mitochondrial Reactive Oxygen Species. Antioxidants, 2021, 10, 1336.	2.2	11
6	A Functional Role of GAS6/TAM in Nonalcoholic Steatohepatitis Progression Implicates AXL as Therapeutic Target. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 349-368.	2.3	39
7	Mitochondrial Glutathione: Recent Insights and Role in Disease. Antioxidants, 2020, 9, 909.	2.2	89
8	Relevance of SIRT1-NF-κB Axis as Therapeutic Target to Ameliorate Inflammation in Liver Disease. International Journal of Molecular Sciences, 2020, 21, 3858.	1.8	90
9	Regorafenib Alteration of the BCL-xL/MCL-1 Ratio Provides a Therapeutic Opportunity for BH3-Mimetics in Hepatocellular Carcinoma Models. Cancers, 2020, 12, 332.	1.7	13
10	Oxidative inactivation of amyloid beta-degrading proteases by cholesterol-enhanced mitochondrial stress. Redox Biology, 2019, 26, 101283.	3.9	27
11	Recent Insights into the Mitochondrial Role in Autophagy and Its Regulation by Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	1.9	102
12	Antiapoptotic BCL-2 proteins determine sorafenib/regorafenib resistance and BH3-mimetic efficacy in hepatocellular carcinoma. Oncotarget, 2018, 9, 16701-16717.	0.8	44
13	Differential Role of Cathepsins S and B In Hepatic APC-Mediated NKT Cell Activation and Cytokine Secretion. Frontiers in Immunology, 2018, 9, 391.	2.2	24
14	Alzheimer's Disease Mutant Mice Exhibit Reduced Brain Tissue Stiffness Compared to Wild-type Mice in both Normoxia and following Intermittent Hypoxia Mimicking Sleep Apnea. Frontiers in Neurology, 2018, 9, 1.	1.1	250
15	Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy, 2018, 14, 1129-1154.	4.3	97
16	Ageing and chronic intermittent hypoxia mimicking sleep apnea do not modify local brain tissue stiffness in healthy mice. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 106-113.	1.5	13
17	Cysteine cathepsins control hepatic NF-κB-dependent inflammation via sirtuin-1 regulation. Cell Death and Disease, 2016, 7, e2464-e2464.	2.7	42
18	Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget, 2016, 7, 8253-8267.	0.8	40

#	Article	IF	Citations
19	Oxidative Stress in Nonalcoholic Fatty Liver Disease. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 279-308.	0.4	1
20	Endoplasmic Reticulum Stress Mediates Amyloid \hat{l}^2 Neurotoxicity via Mitochondrial Cholesterol Trafficking. American Journal of Pathology, 2014, 184, 2066-2081.	1.9	85
21	Mitochondrial cholesterol accumulation in alcoholic liver disease: Role of ASMase and endoplasmic reticulum stress. Redox Biology, 2014, 3, 100-108.	3.9	44
22	APP/PS1 mice overexpressing SREBP-2 exhibit combined $\hat{Al^2}$ accumulation and tau pathology underlying Alzheimer's disease. Human Molecular Genetics, 2013, 22, 3460-3476.	1.4	98
23	Mitochondrial glutathione: Features, regulation and role in disease. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3317-3328.	1.1	160
24	ASMase is required for chronic alcohol induced hepatic endoplasmic reticulum stress and mitochondrial cholesterol loading. Journal of Hepatology, 2013, 59, 805-813.	1.8	89
25	Hepatocarcinogenesis and Ceramide/Cholesterol Metabolism. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 364-375.	0.9	30
26	Metabolic Therapy: Lessons from Liver Diseases. Current Pharmaceutical Design, 2011, 17, 3933-3944.	0.9	19
27	Caveolin-1 Deficiency Causes Cholesterol-Dependent Mitochondrial Dysfunction and Apoptotic Susceptibility. Current Biology, 2011, 21, 681-686.	1.8	175
28	Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1217-1224.	0.5	90
29	Alcohol, Signaling, and ECM Turnover. Alcoholism: Clinical and Experimental Research, 2010, 34, 4-18.	1.4	33
30	Redox Control of Liver Function in Health and Disease. Antioxidants and Redox Signaling, 2010, 12, 1295-1331.	2.5	155
31	Mitochondrial Cholesterol Loading Exacerbates Amyloid \hat{l}^2 Peptide-Induced Inflammation and Neurotoxicity. Journal of Neuroscience, 2009, 29, 6394-6405.	1.7	134
32	Mitochondria, cholesterol and amyloid \hat{l}^2 peptide: a dangerous trio in Alzheimer disease. Journal of Bioenergetics and Biomembranes, 2009, 41, 417-423.	1.0	50
33	Novel roles for GAPDH in cell death and carcinogenesis. Cell Death and Differentiation, 2009, 16, 1573-1581.	5.0	232
34	Mitochondrial <i>S</i> â€Adenosylâ€ <scp>l</scp> â€Methionine Transport is Insensitive to Alcoholâ€Mediated Changes in Membrane Dynamics. Alcoholism: Clinical and Experimental Research, 2009, 33, 1169-1180.	1.4	23
35	Mitochondrial Glutathione, a Key Survival Antioxidant. Antioxidants and Redox Signaling, 2009, 11, 2685-2700.	2.5	777
36	Cholesterol and sphingolipids in alcohol-induced liver injury. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, S9-S15.	1.4	29

#	Article	IF	CITATIONS
37	Mechanism of Mitochondrial Glutathione-Dependent Hepatocellular Susceptibility to TNF Despite NF-κB Activation. Gastroenterology, 2008, 134, 1507-1520.	0.6	96
38	Mitochondrial Cholesterol Contributes to Chemotherapy Resistance in Hepatocellular Carcinoma. Cancer Research, 2008, 68, 5246-5256.	0.4	219
39	GAPDH and Autophagy Preserve Survival after Apoptotic Cytochrome c Release in the Absence of Caspase Activation. Cell, 2007, 129, 983-997.	13.5	464
40	GAPDH and Autophagy Preserve Survival after Apoptotic Cytochrome c Release in the Absence of Caspase Activation. Cell, 2007, 130, 385.	13.5	0
41	Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metabolism, 2006, 4, 185-198.	7.2	537
42	Ceramide, Tumor Necrosis Factor and Alcohol-Induced Liver Disease. Alcoholism: Clinical and Experimental Research, 2005, 29, 158S-161S.	1.4	18
43	Critical Role of Mitochondrial Glutathione in the Survival of Hepatocytes during Hypoxia. Journal of Biological Chemistry, 2005, 280, 3224-3232.	1.6	93
44	Mitochondrial permeability transition induced by reactive oxygen species is independent of cholesterol-regulated membrane fluidity. FEBS Letters, 2004, 560, 63-68.	1.3	36
45	Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor–induced lethal hepatitis. Journal of Clinical Investigation, 2004, 113, 895-904.	3.9	32
46	Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor–induced lethal hepatitis. Journal of Clinical Investigation, 2004, 113, 895-904.	3.9	61
47	Glycosphingolipids and mitochondria: Role in apoptosis and disease. Glycoconjugate Journal, 2003, 20, 579-588.	1.4	70
48	Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion. Hepatology, 2003, 38, 692-702.	3.6	127
49	Acetaldehyde impairs mitochondrial glutathione transport in HepG2 cells through endoplasmic reticulum stress. Gastroenterology, 2003, 124, 708-724.	0.6	155
50	Cholesterol Impairs the Adenine Nucleotide Translocator-mediated Mitochondrial Permeability Transition through Altered Membrane Fluidity. Journal of Biological Chemistry, 2003, 278, 33928-33935.	1.6	120
51	Defective TNF-α–mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. Journal of Clinical Investigation, 2003, 111, 197-208.	3.9	200
52	Mitochondria in Alcoholic Liver Disease. , 2002, , 361-377.		0
53	Trafficking of Ganglioside GD3 to Mitochondria by Tumor Necrosis Factor-α. Journal of Biological Chemistry, 2002, 277, 36443-36448.	1.6	133
54	PGE 1 Protection against Apoptosis Induced by d -galactosamine is Not Related to the Modulation of Intracellular Free Radical Production in Primary Culture of Rat Hepatocytes. Free Radical Research, 2002, 36, 345-355.	1.5	67

#	Article	IF	CITATIONS
55	Divergent role of ceramide generated by exogenous sphingomyelinases on NF-κB activation and apoptosis in human colon HT-29 cells. FEBS Letters, 2002, 526, 15-20.	1.3	22
56	Ceramide generated by acidic sphingomyelinase contributes to tumor necrosis factor-α-mediated apoptosis in human colon HT-29 cells through glycosphingolipids formation. FEBS Letters, 2002, 526, 135-141.	1.3	60
57	S-Adenosyl-I-methionine and mitochondrial reduced glutathione depletion in alcoholic liver disease. Alcohol, 2002, 27, 179-183.	0.8	82
58	Tauroursodeoxycholic acid protects hepatocytes from ethanol-fed rats against tumor necrosis factor–induced cell death by replenishing mitochondrial glutathione. Hepatology, 2001, 34, 964-971.	3.6	75
59	How Is the Liver Primed or Sensitized for Alcoholic Liver Disease?. Alcoholism: Clinical and Experimental Research, 2001, 25, 171S-181S.	1.4	50
60	Ganglioside GD3 enhances apoptosis by suppressing the nuclear factor-κB-dependent survival pathway. FASEB Journal, 2001, 15, 1068-1070.	0.2	80
61	Ganglioside GD3 enhances apoptosis by suppressing the nuclear factorâ€îºBâ€dependent survival pathway. FASEB Journal, 2001, 15, 1068-1070.	0.2	15
62	How Is the Liver Primed or Sensitized for Alcoholic Liver Disease?. Alcoholism: Clinical and Experimental Research, 2001, 25, 171S-181S.	1.4	36
63	Human placenta sphingomyelinase, an exogenous acidic pH-optimum sphingomyelinase, induces oxidative stress, glutathione depletion, and apoptosis in rat hepatocytes. Hepatology, 2000, 32, 56-65.	3.6	55
64	Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation. FASEB Journal, 2000, 14, 847-858.	0.2	187
65	Differential role of ethanol and acetaldehyde in the induction of oxidative stress in HEP G2 cells: Effect on transcription factors AP-1 and NF-κB. Hepatology, 1999, 30, 1473-1480.	3.6	82
66	Oxidative stress: Role of mitochondria and protection by glutathione. BioFactors, 1998, 8, 7-11.	2.6	170
67	HEPATIC MITOCHONDRIAL GLUTATHIONE DEPLETION AND CYTOKINE-MEDIATED ALCOHOLIC LIVER DISEASE. Alcoholism: Clinical and Experimental Research, 1998, 22, 763-765.	1.4	1
68	Chronic Ethanol Feeding Induces Cellular Antioxidants Decrease and Oxidative Stress in Rat Peripheral Nerves. Effect of S-Adenosyl-l-Methionine and N-Acetyl-l-Cysteine. Free Radical Biology and Medicine, 1998, 25, 365-368.	1,3	42
69	Transcriptional regulation of the heavy subunit chain of γâ€glutamylcysteine synthetase by ionizing radiation. FEBS Letters, 1998, 427, 15-20.	1.3	57
70	Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor. Gastroenterology, 1998, 115, 1541-1551.	0.6	349
71	Mitochondrial Glutathione: Importance and Transport. Seminars in Liver Disease, 1998, 18, 389-401.	1.8	203
72	Tumor Necrosis Factor Increases Hepatocellular Glutathione by Transcriptional Regulation of the Heavy Subunit Chain of \hat{I}^3 -Glutamylcysteine Synthetase. Journal of Biological Chemistry, 1997, 272, 30371-30379.	1.6	133

#	Article	IF	CITATIONS
73	Direct Effect of Ceramide on the Mitochondrial Electron Transport Chain Leads to Generation of Reactive Oxygen Species. Journal of Biological Chemistry, 1997, 272, 11369-11377.	1.6	727
74	Conformationally restricted analogues of methionine: Synthesis of chiral 3-Amino-5-methylthio-2-piperidones. Tetrahedron, 1996, 52, 7727-7736.	1.0	20
75	FeedingS-adenosyl-l-methionine attenuates both ethanol-induced depletion of mitochondrial glutathione and mitochondrial dysfunction in periportal and perivenous rat hepatocytes. Hepatology, 1995, 21, 207-214.	3.6	193
76	Evidence That the Rat Hepatic Mitochondrial Carrier Is Distinct from the Sinusoidal and Canalicular Transporters for Reduced Glutathione. Journal of Biological Chemistry, 1995, 270, 15946-15949.	1.6	48
77	Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa B: studies with isolated mitochondria and rat hepatocytes. Molecular Pharmacology, 1995, 48, 825-34.	1.0	272