Akos A Gerencser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11301478/publications.pdf

Version: 2024-02-01

40 papers

3,728 citations

218677
26
h-index

276875
41
g-index

41 all docs

41 docs citations

41 times ranked

6473 citing authors

#	Article	IF	CITATIONS
1	Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO Journal, 2006, 25, 3900-3911.	7.8	603
2	Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. Journal of Biological Chemistry, 2017, 292, 7189-7207.	3.4	343
3	Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion. Analytical Chemistry, 2009, 81, 6868-6878.	6.5	290
4	The contributions of respiration and glycolysis to extracellular acid production. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 171-181.	1.0	264
5	The Role of Mitochondrially Derived ATP in Synaptic Vesicle Recycling. Journal of Biological Chemistry, 2015, 290, 22325-22336.	3.4	219
6	Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. Journal of Neurochemistry, 2009, 109, 1179-1191.	3.9	186
7	Quantitative measurement of mitochondrial membrane potential in cultured cells: calciumâ€induced de― and hyperpolarization of neuronal mitochondria. Journal of Physiology, 2012, 590, 2845-2871.	2.9	172
8	Suppressors of Superoxide-H 2 O 2 Production at Site I Q of Mitochondrial Complex I Protect against Stem Cell Hyperplasia and Ischemia-Reperfusion Injury. Cell Metabolism, 2016, 24, 582-592.	16.2	162
9	The Mechanism of Superoxide Production by the Antimycin-inhibited Mitochondrial Q-cycle. Journal of Biological Chemistry, 2011, 286, 31361-31372.	3.4	158
10	A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. Journal of Cell Science, 2011, 124, 348-358.	2.0	151
11	Mitochondrial Alterations by PARKIN in Dopaminergic Neurons Using PARK2 Patient-Specific and PARK2 Knockout Isogenic iPSC Lines. Stem Cell Reports, 2015, 4, 847-859.	4.8	128
12	Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria. Free Radical Biology and Medicine, 2013, 61, 298-309.	2.9	103
13	ROS Control Mitochondrial Motility through p38 and the Motor Adaptor Miro/Trak. Cell Reports, 2017, 21, 1667-1680.	6.4	100
14	Forward operation of adenine nucleotide translocase during F ₀ F ₁ â€ATPase reversal: critical role of matrix substrateâ€level phosphorylation. FASEB Journal, 2010, 24, 2405-2416.	0.5	91
15	Osteoblast-like MC3T3-E1 Cells Prefer Glycolysis for ATP Production but Adipocyte-like 3T3-L1 Cells Prefer Oxidative Phosphorylation. Journal of Bone and Mineral Research, 2018, 33, 1052-1065.	2.8	71
16	Mitochondrial Swelling Measurement In Situ by Optimized Spatial Filtering: Astrocyte-Neuron Differences. Biophysical Journal, 2008, 95, 2583-2598.	0.5	60
17	PGC- $1\hat{l}\pm$ and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function. Stem Cell Reports, 2013, 1, 560-574.	4.8	59
18	Mitochondrial Ca2+ Dynamics Reveals Limited Intramitochondrial Ca2+ Diffusion. Biophysical Journal, 2005, 88, 698-714.	0.5	51

#	Article	IF	Citations
19	Intrinsic Bioenergetic Properties and Stress Sensitivity of Dopaminergic Synaptosomes. Journal of Neuroscience, 2011, 31, 4524-4534.	3.6	46
20	Novel Inhibitors of Mitochondrial sn-Glycerol 3-phosphate Dehydrogenase. PLoS ONE, 2014, 9, e89938.	2.5	46
21	Measurement of Instantaneous Velocity Vectors of Organelle Transport: Mitochondrial Transport and Bioenergetics in Hippocampal Neurons. Biophysical Journal, 2008, 95, 3079-3099.	0.5	43
22	Inhibition of glutamate-induced delayed calcium deregulation by 2-APB and La3+ in cultured cortical neurones. Journal of Neurochemistry, 2004, 91, 471-483.	3.9	41
23	Impaired spare respiratory capacity in cortical synaptosomes from Sod2 null mice. Free Radical Biology and Medicine, 2011, 50, 866-873.	2.9	34
24	Realâ€time visualization of cytoplasmic calpain activation and calcium deregulation in acute glutamate excitotoxicity. Journal of Neurochemistry, 2009, 110, 990-1004.	3.9	33
25	Mitochondrial bioenergetics and neuronal survival modelled in primary neuronal culture and isolated nerve terminals. Journal of Bioenergetics and Biomembranes, 2015, 47, 63-74.	2.3	31
26	Complex Contribution of Cyclophilin D to Ca2+-induced Permeability Transition in Brain Mitochondria, with Relation to the Bioenergetic State. Journal of Biological Chemistry, 2011, 286, 6345-6353.	3.4	27
27	No Consistent Bioenergetic Defects in Presynaptic Nerve Terminals Isolated from Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2012, 32, 16775-16784.	3 . 6	27
28	Metabolic activation-driven mitochondrial hyperpolarization predicts insulin secretion in human pancreatic beta-cells. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 817-828.	1.0	25
29	Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells. PLoS ONE, 2016, 11, e0159199.	2.5	24
30	Quantitative analysis of mitochondrial membrane potential heterogeneity in unsynchronized and synchronized cancer cells. FASEB Journal, 2021, 35, e21148.	0.5	23
31	Bioenergetic Analysis of Single Pancreatic \hat{l}^2 -Cells Indicates an Impaired Metabolic Signature in Type 2 Diabetic Subjects. Endocrinology, 2015, 156, 3496-3503.	2.8	16
32	Positive Feedback Amplifies the Response of Mitochondrial Membrane Potential to Glucose Concentration in Clonal Pancreatic Beta Cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1054-1065.	3.8	15
33	Total Cellular ATP Production Changes With Primary Substrate in MCF7 Breast Cancer Cells. Frontiers in Oncology, 2020, 10, 1703.	2.8	15
34	Superoxide produced by mitochondrial site IQ inactivates cardiac succinate dehydrogenase and induces hepatic steatosis in Sod2 knockout mice. Free Radical Biology and Medicine, 2021, 164, 223-232.	2.9	14
35	The Mitochondrial Targets of Neuroprotective Drug Vinpocetine on Primary Neuron Cultures, Brain Capillary Endothelial Cells, Synaptosomes, and Brain Mitochondria. Neurochemical Research, 2019, 44, 2435-2447.	3.3	12
36	Calcium modulation of exocytosis-linked plasma membrane potential oscillations in INS-1 832/13 cells. Biochemical Journal, 2015, 471, 111-122.	3.7	10

3

#	Article	IF	CITATION
37	Controlled power: how biology manages succinate-driven energy release. Biochemical Society Transactions, 2021, 49, 2929-2939.	3.4	10
38	Effects of sugars, fatty acids and amino acids on cytosolic and mitochondrial hydrogen peroxide release from liver cells. Free Radical Biology and Medicine, 2022, 188, 92-102.	2.9	10
39	Exploiting Mitochondria InÂVivo as Chemical Reaction Chambers Dependent on Membrane Potential. Molecular Cell, 2016, 61, 642-643.	9.7	9
40	Natural Genetic Variation in Yeast Reveals That NEDD4 Is a Conserved Modifier of Mutant Polyglutamine Aggregation. G3: Genes, Genomes, Genetics, 2018, 8, 3421-3431.	1.8	5