Arindam Gan Chowdhury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11301459/publications.pdf

Version: 2024-02-01

79 papers

1,265 citations

20 h-index 32 g-index

80 all docs 80 docs citations

80 times ranked 485 citing authors

#	Article	IF	Citations
1	Hurricane Wind Power Spectra, Cospectra, and Integral Length Scales. Boundary-Layer Meteorology, 2008, 129, 411-430.	2.3	80
2	A new technique for identification of eighteen flutter derivatives using a three-degree-of-freedom section model. Engineering Structures, 2003, 25, 1763-1772.	5.3	78
3	Partial turbulence simulation method for predicting peak wind loads on small structures and building appurtenances. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 157, 47-62.	3.9	75
4	Application of a full-scale testing facility for assessing wind-driven-rain intrusion. Building and Environment, 2009, 44, 2430-2441.	6.9	60
5	Influence of spacing parameters on the wind loading of solar array. Journal of Fluids and Structures, 2014, 48, 295-315.	3.4	57
6	Wind profile management and blockage assessment for a new 12-fan Wall of Wind facility at FIU. Wind and Structures, an International Journal, 2011, 14, 285-300.	0.8	44
7	Identification of eighteen flutter derivatives of an airfoil and a bridge deck. Wind and Structures, an International Journal, 2004, 7, 187-202.	0.8	40
8	Full-scale validation of vortex suppression techniques for mitigation of roof uplift. Engineering Structures, 2009, 31, 2936-2946.	5.3	39
9	Large-scale testing on wind uplift of roof pavers. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 128, 22-36.	3.9	36
10	Full-scale testing to evaluate the performance of standing seam metal roofs under simulated wind loading. Engineering Structures, 2015, 105, 231-248.	5.3	35
11	Gust Factors and Turbulence Intensities for the Tropical Cyclone Environment. Journal of Applied Meteorology and Climatology, 2009, 48, 534-552.	1.5	33
12	Aerodynamic Mitigation of Roof and Wall Corner Suctions Using Simple Architectural Elements. Journal of Engineering Mechanics - ASCE, 2013, 139, 396-408.	2.9	33
13	Full-scale aerodynamic testing of a loose concrete roof paver system. Engineering Structures, 2012, 44, 260-270.	5.3	32
14	Experimental identification of rational function coefficients for time-domain flutter analysis. Engineering Structures, 2005, 27, 1349-1364.	5.3	31
15	Distribution of wind-driven rain deposition on low-rise buildings: Direct impinging raindrops versus surface runoff. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 133, 27-38.	3.9	29
16	Wall of Wind Full-Scale Destructive Testing of Coastal Houses and Hurricane Damage Mitigation. Journal of Coastal Research, 2007, 23, 1211.	0.3	27
17	Simulation of wind-driven rain associated with tropical storms and hurricanes using the 12-fan Wall of Wind. Building and Environment, 2014, 76, 18-29.	6.9	27
18	A proposed technique for determining aerodynamic pressures on residential homes. Wind and Structures, an International Journal, 2012, 15, 27-41.	0.8	24

#	Article	IF	CITATIONS
19	Development of devices and methods for simulation of hurricane winds in a full-scale testing facility. Wind and Structures, an International Journal, 2009, 12, 151-177.	0.8	23
20	Wind-Loading Effects on Roof-to-Wall Connections of Timber Residential Buildings. Journal of Engineering Mechanics - ASCE, 2013, 139, 386-395.	2.9	22
21	Estimation of Wind-Driven Rain Intrusion through Building Envelope Defects and Breaches during Tropical Cyclones. Natural Hazards Review, 2015, 16, .	1.5	22
22	Wind loading on ridge, hip and perimeter roof tiles: A full-scale experimental study. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 166, 90-105.	3.9	19
23	Comparisons of Two Wind Tunnel Pressure Databases and Partial Validation against Full-Scale Measurements. Journal of Structural Engineering, 2014, 140, .	3.4	17
24	Computational assessment of blockage and wind simulator proximity effects for a new full-scale testing facility. Wind and Structures, an International Journal, 2010, 13, 21-36.	0.8	17
25	Performance of Roof Tiles under Simulated Hurricane Impact. Journal of Architectural Engineering, 2009, 15, 26-34.	1.6	16
26	Aerodynamic Mitigation of Wind Uplift on Low-Rise Building Roof Using Large-Scale Testing. Frontiers in Built Environment, 2020, 5, .	2.3	15
27	Aeroelastic modeling to study the wind-induced response of a self-supported lattice tower. Engineering Structures, 2021, 245, 112885.	5.3	15
28	Study of the Capability of Multiple Mechanical Fasteners in Roof-to-Wall Connections of Timber Residential Buildings. Practice Periodical on Structural Design and Construction, 2011, 16, 2-9.	1.3	14
29	Simplified Wind Flow Model for the Estimation of Aerodynamic Effects on Small Structures. Journal of Engineering Mechanics - ASCE, 2013, 139, 367-375.	2.9	14
30	Destructive Testing under Simulated Hurricane Effects to Promote Hazard Mitigation. Natural Hazards Review, 2009, 10, 1-10.	1.5	13
31	Wind Directionality Factors for Nonhurricane and Hurricane-Prone Regions. Journal of Structural Engineering, 2015, 141, 04014208.	3.4	13
32	Characterization of wind-induced pressure on membrane roofs based on full-scale wind tunnel testing. Engineering Structures, 2021, 235, 112101.	5. 3	13
33	Holistic testing to determine quantitative wind-driven rain intrusion for shuttered and impact resistant windows. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206, 104359.	3.9	13
34	Wind loading on trees integrated with a building envelope. Wind and Structures, an International Journal, 2013, 17, 69-85.	0.8	13
35	Assessment of ASCE 7-10 Standard Methods for Determining Wind Loads. Journal of Structural Engineering, 2013, 139, 2044-2047.	3.4	12
36	Household Preferences for a Hurricane Mitigation Fund in Florida. Natural Hazards Review, 2015, $16, .$	1.5	12

#	Article	IF	Citations
37	Simulation of Rain Penetration and Associated Damage in Buildings within a Hurricane Vulnerability Model. Natural Hazards Review, 2018, 19, .	1.5	12
38	Effects of roof geometric details on aerodynamic performance of standing seam metal roofs. Engineering Structures, 2020, 225, 111303.	5.3	12
39	Triaxial Load Testing of Metal and FRP Roof-to-Wall Connectors. Journal of Architectural Engineering, 2011, 17, 112-120.	1.6	11
40	Study on Roof Vents Subjected to Simulated Hurricane Effects. Natural Hazards Review, 2011, 12, 158-165.	1.5	11
41	Effect of wind-induced internal pressure on local frame forces of low-rise buildings. Engineering Structures, 2017, 143, 455-468.	5. 3	11
42	Opening and Compartmentalization Effects of Internal Pressure in Low-Rise Buildings with Gable and Hip Roofs. Journal of Architectural Engineering, 2015, 21, .	1.6	10
43	Full Scale and Wind Tunnel Testing of a Photovoltaic Panel Mounted on Residential Roofs. , 2012, , .		9
44	Investigation of wind-induced dynamic and aeroelastic effects on variable message signs. Wind and Structures, an International Journal, 2015, 20, 793-810.	0.8	9
45	Wind Effects on Roofs with High-Profile Tiles: Experimental Study. Journal of Architectural Engineering, 2014, 20, .	1.6	8
46	Design of rigid structures for wind using time series of demand-to-capacity indexes: Application to steel portal frames. Engineering Structures, 2017, 132, 428-442.	5. 3	8
47	Insights from a Stated Preference Experiment of Florida Residents: Role of Information and Incentives in Hurricane Risk Mitigation. Natural Hazards Review, 2019, 20, 04018029.	1.5	8
48	A new experimental-numerical approach to estimate peak wind loads on roof-mounted photovoltaic systems by incorporating inflow turbulence and dynamic effects. Engineering Structures, 2022, 252, 113739.	5.3	8
49	Maximum grid spacing effect on peak pressure computation using inflow turbulence generators. Results in Engineering, 2022, 15, 100491.	5.1	8
50	Development of Fiber-Reinforced Polymer Roof-to-Wall Connection. Journal of Composites for Construction, 2011, 15, 644-652.	3.2	7
51	Experimental Assessment of Wind Loads on Roof-to-Wall Connections for Residential Buildings. Frontiers in Built Environment, 2020, 6, .	2.3	7
52	Testing of Residential Homes under Wind Loads. Natural Hazards Review, 2011, 12, 166-170.	1.5	6
53	Innovative Hurricane-Resistant UHPC Roof System. Journal of Architectural Engineering, 2018, 24, .	1.6	6
54	Full-Scale Testing of a Precast Concrete Supertile Roofing System for Hurricane Damage Mitigation. Journal of Architectural Engineering, 2016, 22, .	1.6	5

#	Article	IF	CITATIONS
55	Effect of assembly construction on the wind induced pressure of membrane roofs. Engineering Structures, 2020, 221, 110725.	5.3	5
56	Dependence of internal pressure in low-rise buildings on aerodynamic parameters, defect features and background leakage. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 219, 104822.	3.9	5
57	Aeroelastic Testing of Span-Wire Traffic Signal Systems. Frontiers in Built Environment, 2020, 6, .	2.3	4
58	A Parametric Representation of Wind-Driven Rain in Experimental Setups. , 2012, , .		4
59	Partial turbulence simulation and aerodynamic pressures validation for an open-jet testing facility. Wind and Structures, an International Journal, 2014, 19, 15-33.	0.8	4
60	Florida International University's Wall of Wind: A Tool for Improving Construction Materials and Methods for Hurricane-Prone Regions. , 2011, , .		3
61	Design and Fabrication of a New Open Jet Electric-Fan Wall of Wind Facility for Coastal Research. , 2013, , .		3
62	Innovative testing facility to mitigate hurricane-induced losses. Eos, 2007, 88, 262-262.	0.1	2
63	Design, Development, and Testing of a Composite Roofing System. Journal of Composites for Construction, 2016, 20, 04015052.	3.2	2
64	FULL-SCALE EXPERIMENTAL TESTING TO INVESTIGATE WIND-INDUCED VIBRATIONS ON CURTAIN WALL SYSTEMS. Proceedings of International Structural Engineering and Construction, 2021, 8, .	0.1	2
65	Towards guidelines for design of loose-laid roof pavers for wind uplift. Wind and Structures, an International Journal, 2016, 22, 133-160.	0.8	2
66	Experimental investigation of wind impact on low-rise elevated residences. Engineering Structures, 2022, 257, 114096.	5.3	2
67	Study of wind loads on asphalt shingles using full-scale experimentation. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 225, 105005.	3.9	2
68	Design Guidelines for Roof Pavers against Wind Uplift. , 2015, , .		1
69	Experimental Assessment of Wind Loads on Vinyl Wall Siding. Frontiers in Built Environment, 2016, 2, .	2.3	1
70	Mitigation of Aerodynamic Uplift Loads Using Roof Integrated Wind Turbine Systems. Frontiers in Built Environment, 2019, 5, .	2.3	1
71	Full-Scale Destructive Testing of Houses to Hurricane-Force Wind and Rain., 2008,,.		O
72	Full Scale and Wind Tunnel Testing of Rooftop Equipment on a Flat Roof. , 2012, , .		0

#	Article	IF	CITATIONS
73	Wind Uplift of Concrete Roof Pavers. , 2014, , .		O
74	Closure to "Wind Directionality Factors for Nonhurricane and Hurricane-Prone Regions―by Filmon Habte, Arindam Gan Chowdhury, DongHun Yeo, and Emil Simiu. Journal of Structural Engineering, 2016, 142, 07015010.	3.4	0
75	Estimation of Wind Loads on the Balcony Glass Handrails of Mid-Rise Buildings. , 2017, , .		O
76	An Experimental Study on the Wind-Induced Response of Variable Message Signs. Frontiers in Built Environment, 2017, 3, .	2.3	0
77	Determining the Efficacy of a Retrofit Technique for Residential Buildings Using Holistic Testing. , 2020, , .		O
78	Wall of Wind Research and Testing to Enhance Resilience of Civil Infrastructure to Hurricane Multi-Hazards., 2016,, 357-379.		0
79	Effects of Permeability on the Dynamic Properties and Weathertightness of Double Skin Curtain Walls., 2022,,.		0