
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11301179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	State of the Art of High Heat Flux Cooling Technologies. Heat Transfer Engineering, 2007, 28, 258-281.	1.9	488
2	Boiling in microchannels: a review of experiment and theory. International Journal of Heat and Fluid Flow, 2004, 25, 128-139.	2.4	477
3	Investigation of flow boiling in horizontal tubes: Part l—A new diabatic two-phase flow pattern map. International Journal of Heat and Mass Transfer, 2005, 48, 2955-2969.	4.8	420
4	Investigation of flow boiling in horizontal tubes: Part Il—Development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes. International Journal of Heat and Mass Transfer, 2005, 48, 2970-2985.	4.8	300
5	Characterization of diabatic two-phase flows in microchannels: Flow parameter results for R-134a in a 0.5mm channel. International Journal of Multiphase Flow, 2006, 32, 755-774.	3.4	247
6	Investigation of saturated critical heat flux in a single, uniformly heated microchannel. Experimental Thermal and Fluid Science, 2006, 30, 765-774.	2.7	232
7	Two-Phase Flow Patterns and Flow-Pattern Maps: Fundamentals and Applications. Applied Mechanics Reviews, 2008, 61, .	10.1	232
8	Flow pattern based two-phase frictional pressure drop model for horizontal tubes, Part II: New phenomenological model. International Journal of Heat and Fluid Flow, 2007, 28, 1060-1072.	2.4	185
9	State-of-the-Art Overview of Boiling and Two-Phase Flows in Microchannels. Heat Transfer Engineering, 2006, 27, 4-19.	1.9	178
10	Heat Transfer Model for Evaporation of Elongated Bubble Flows in Microchannels. Journal of Heat Transfer, 2002, 124, 1131-1136.	2.1	176
11	New prediction methods for CO2 evaporation inside tubes: Part I – A two-phase flow pattern map and a flow pattern based phenomenological model for two-phase flow frictional pressure drops. International Journal of Heat and Mass Transfer, 2008, 51, 111-124.	4.8	171
12	Boiling of new refrigerants: a state-of-the-art review. International Journal of Refrigeration, 1996, 19, 435-457.	3.4	167
13	An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels. Experimental Thermal and Fluid Science, 2006, 31, 1-19.	2.7	166
14	A theoretical model for the prediction of the critical heat flux in heated microchannels. International Journal of Heat and Mass Transfer, 2008, 51, 1216-1225.	4.8	160
15	New prediction methods for CO2 evaporation inside tubes: Part II—An updated general flow boiling heat transfer model based on flow patterns. International Journal of Heat and Mass Transfer, 2008, 51, 125-135.	4.8	142
16	New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes. International Journal of Heat and Mass Transfer, 2006, 49, 4082-4094.	4.8	134
17	Flow boiling heat transfer of R134a, R236fa and R245fa in a horizontal 1.030mm circular channel. Experimental Thermal and Fluid Science, 2009, 33, 651-663.	2.7	131
18	Void fraction prediction in annular two-phase flow. International Journal of Multiphase Flow, 2012, 43, 72-84.	3.4	130

#	Article	IF	CITATIONS
19	Analysis of supercritical CO2 cooling in macro- and micro-channels. International Journal of Refrigeration, 2008, 31, 1301-1316.	3.4	121
20	Experimental investigation of R-134a and R-245fa two-phase flow in microchannels for different flow conditions. International Journal of Heat and Fluid Flow, 2007, 28, 63-71.	2.4	115
21	Algebraic turbulence modeling in adiabatic and evaporating annular two-phase flow. International Journal of Heat and Fluid Flow, 2011, 32, 805-817.	2.4	115
22	Nanofluid Two-Phase Flow and Thermal Physics: A New Research Frontier of Nanotechnology and Its Challenges. Journal of Nanoscience and Nanotechnology, 2008, 8, 3315-3332.	0.9	111
23	Unified macro-to-microscale method to predict two-phase frictional pressure drops of annular flows. International Journal of Multiphase Flow, 2009, 35, 1138-1148.	3.4	104
24	Comprehensive Thermodynamic Approach to Modeling Refrigerant-Lubricating Oil Mixtures. HVAC and R Research, 1995, 1, 110-125.	0.6	103
25	Prediction of binary mixture boiling heat transfer coefficients using only phase equilibrium data. International Journal of Heat and Mass Transfer, 1983, 26, 965-974.	4.8	96
26	State-of-the-art of two-phase flow and flow boiling heat transfer and pressure drop of CO2 in macro- and micro-channels. International Journal of Refrigeration, 2005, 28, 1149-1168.	3.4	96
27	Entrained liquid fraction prediction in adiabatic and evaporating annular two-phase flow. Nuclear Engineering and Design, 2012, 243, 200-213.	1.7	96
28	Flow pattern based two-phase frictional pressure drop model for horizontal tubes. Part I: Diabatic and adiabatic experimental study. International Journal of Heat and Fluid Flow, 2007, 28, 1049-1059.	2.4	94
29	Heat transfer, pressure drop, and flow pattern recognition during condensation inside smooth, helical micro-fin, and herringbone tubes. International Journal of Refrigeration, 2007, 30, 609-623.	3.4	94
30	Flow boiling and frictional pressure gradients in plate heat exchangers. Part 2: Comparison of literature methods to database and new prediction methods. International Journal of Refrigeration, 2016, 61, 185-203.	3.4	93
31	Two-Phase Flow Pattern Map for Evaporation in Horizontal Tubes: Latest Version. Heat Transfer Engineering, 2003, 24, 3-10.	1.9	88
32	Adiabatic two-phase frictional pressure drops in microchannels. Experimental Thermal and Fluid Science, 2007, 31, 673-685.	2.7	83
33	Numerical modeling of laminar annular film condensation for different channel shapes. International Journal of Heat and Mass Transfer, 2010, 53, 2615-2627.	4.8	79
34	Flow boiling and frictional pressure gradients in plate heat exchangers. Part 1: Review and experimental database. International Journal of Refrigeration, 2016, 61, 166-184.	3.4	79
35	Flow boiling in horizontal flattened tubes: Part I – Two-phase frictional pressure drop results and model. International Journal of Heat and Mass Transfer, 2009, 52, 3634-3644.	4.8	78
36	Two-Phase Flow and Heat Transfer across Horizontal Tube Bundlesâ€A Review. Heat Transfer Engineering, 2007, 28, 508-524.	1.9	76

#	Article	IF	CITATIONS
37	Flow boiling characteristics and flow pattern visualization of refrigerant/lubricant oil mixtures. International Journal of Refrigeration, 2009, 32, 185-202.	3.4	74
38	Two-phase mini-thermosyphon electronics cooling: Dynamic modeling, experimental validation and application to 2U servers. Applied Thermal Engineering, 2017, 110, 481-494.	6.0	74
39	Elongated bubbles in microchannels. Part I: Experimental study and modeling of elongated bubble velocity. International Journal of Multiphase Flow, 2008, 34, 590-601.	3.4	73
40	Two-phase flow patterns in U-bends and their contiguous straight tubes for different orientations, tube and bend diameters. International Journal of Refrigeration, 2012, 35, 1439-1454.	3.4	71
41	Experimental study on the onset of local dryout in an evaporating falling film on horizontal plain tubes. Experimental Thermal and Fluid Science, 2007, 31, 483-493.	2.7	67
42	Prediction of the entrained liquid fraction in vertical annular gas–liquid two-phase flow. International Journal of Multiphase Flow, 2010, 36, 293-302.	3.4	67
43	Numerical analysis of slug flow boiling in square microchannels. International Journal of Heat and Mass Transfer, 2018, 123, 928-944.	4.8	67
44	Flow boiling heat transfer to carbon dioxide: general prediction method. International Journal of Refrigeration, 2004, 27, 294-301.	3.4	63
45	Flow boiling of ammonia and hydrocarbons: A state-of-the-art review. International Journal of Refrigeration, 2008, 31, 603-620.	3.4	63
46	Interfacial measurements in stratified types of flow. Part I: New optical measurement technique and dry angle measurements. International Journal of Multiphase Flow, 2004, 30, 107-124.	3.4	61
47	Micro-channel flow boiling heat transfer of R-134a, R-236fa, and R-245fa. Microfluidics and Nanofluidics, 2009, 6, 731-746.	2.2	61
48	Flow boiling in horizontal smooth tubes: New heat transfer results for R-134a at three saturation temperatures. Applied Thermal Engineering, 2009, 29, 1289-1298.	6.0	61
49	A review of on-chip micro-evaporation: Experimental evaluation of liquid pumping and vapor compression driven cooling systems and control. Applied Energy, 2012, 92, 147-161.	10.1	61
50	Nucleate boiling heat transfer of R134a on enhanced tubes. Applied Thermal Engineering, 2006, 26, 1018-1031.	6.0	57
51	Flow boiling in horizontal flattened tubes: Part II – Flow boiling heat transfer results and model. International Journal of Heat and Mass Transfer, 2009, 52, 3645-3653.	4.8	55
52	Measurement of dynamic void fractions in stratified types of flow. Experimental Thermal and Fluid Science, 2005, 29, 383-392.	2.7	52
53	Update on advances in flow pattern based two-phase heat transfer models. Experimental Thermal and Fluid Science, 2005, 29, 341-349.	2.7	52
54	In-Tube Flow Boiling of R-407C and R-407C/Oil Mixtures Part II: Plain Tube Results and Predictions. HVAC and R Research, 1998, 4, 373-399.	0.6	50

Јони R Thome

#	Article	IF	CITATIONS
55	Status of prediction methods for critical heat fluxes in mini and microchannels. International Journal of Heat and Fluid Flow, 2009, 30, 983-992.	2.4	50
56	Operational regimes in a closed loop pulsating heat pipe. International Journal of Thermal Sciences, 2016, 102, 78-88.	4.9	50
57	A Flexible Coupled Level Set and Volume of Fluid (flexCLV) method to simulate microscale two-phase flow in non-uniform and unstructured meshes. International Journal of Multiphase Flow, 2017, 91, 276-295.	3.4	50
58	Interfacial measurements in stratified types of flow. Part II: Measurements for R-22 and R-410A. International Journal of Multiphase Flow, 2004, 30, 125-137.	3.4	48
59	Flow Visualization and Flow Pattern Identification With Power Spectral Density Distributions of Pressure Traces During Refrigerant Condensation in Smooth and Microfin Tubes. Journal of Heat Transfer, 2005, 127, 209-220.	2.1	48
60	Liquid film circumferential asymmetry prediction in horizontal annular two-phase flow. International Journal of Multiphase Flow, 2013, 51, 44-54.	3.4	47
61	Understanding the self-sustained oscillating two-phase flow motion in a closed loop pulsating heat pipe. Energy, 2015, 90, 889-899.	8.8	47
62	Cooling of microprocessors using flow boiling of CO2 in a micro-evaporator: Preliminary analysis and performance comparison. Applied Thermal Engineering, 2009, 29, 2426-2432.	6.0	45
63	Elongated bubbles in microchannels. Part II: Experimental study and modeling of bubble collisions. International Journal of Multiphase Flow, 2008, 34, 602-613.	3.4	44
64	Advances in Electronics Cooling. Heat Transfer Engineering, 2013, 34, 434-446.	1.9	44
65	Time-strip visualization and thermo-hydrodynamics in a Closed Loop Pulsating Heat Pipe. Applied Thermal Engineering, 2015, 78, 364-372.	6.0	44
66	Mechanisms of Boiling in Micro-Channels: Critical Assessment. Heat Transfer Engineering, 2010, 31, 288-297.	1.9	43
67	Ammonia two-phase flow in a horizontal smooth tube: Flow pattern observations, diabatic and adiabatic frictional pressure drops and assessment of prediction methods. International Journal of Heat and Mass Transfer, 2009, 52, 2273-2288.	4.8	42
68	The New Frontier in Heat Transfer: Microscale and Nanoscale Technologies. Heat Transfer Engineering, 2006, 27, 1-3.	1.9	41
69	Dynamic flow control and performance comparison of different concepts of two-phase on-chip cooling cycles. Applied Energy, 2014, 114, 179-191.	10.1	41
70	Boiling of Multicomponent Liquid Mixtures. Advances in Heat Transfer, 1984, 16, 59-156.	0.9	38
71	Computational Study of Saturated Flow Boiling Within a Microchannel in the Slug Flow Regime. Journal of Heat Transfer, 2016, 138, .	2.1	36
72	In-Tube Flow Boiling of R-407C and R-407C/Oil Mixtures Part I: Microfin Tube. HVAC and R Research, 1998, 4, 347-372.	0.6	35

ЈОНN **R Т**НОМЕ

#	Article	IF	CITATIONS
73	Boiling heat transfer and two-phase pressure drops within compact plate heat exchangers: Experiments and flow visualizations. International Journal of Heat and Mass Transfer, 2016, 94, 239-253.	4.8	35
74	Constructal tree-shaped microchannel networks for maximizing the saturated critical heat flux. International Journal of Thermal Sciences, 2009, 48, 342-352.	4.9	34
75	An experimental study on flow boiling pressure drop in multi-microchannel evaporators with different refrigerants. Experimental Thermal and Fluid Science, 2017, 80, 391-407.	2.7	34
76	Prediction of the Mixture Effect On Boiling in Vertical Thermosyphon Reboilers. Heat Transfer Engineering, 1989, 10, 29-38.	1.9	33
77	Flow Boiling and Pressure Drop Measurements for R-134a/Oil Mixtures Part 1: Evaporation in a Microfin Tube. HVAC and R Research, 1997, 3, 38-53.	0.6	32
78	Fundamental Issues, Technology Development, and Challenges of Boiling Heat Transfer, Critical Heat Flux, and Two-Phase Flow Phenomena with Nanofluids. Heat Transfer Engineering, 2019, 40, 1301-1336.	1.9	32
79	Comparison of experimental pressure drop data for two phase flows to prediction methods using a general model. International Journal of Refrigeration, 2007, 30, 1358-1367.	3.4	30
80	Experimental investigation of velocity and length of elongated bubbles for flow of R-134a in a 0.5mm microchannel. Experimental Thermal and Fluid Science, 2008, 32, 870-881.	2.7	29
81	Algebraic turbulence modeling in adiabatic gas–liquid annular two-phase flow. International Journal of Multiphase Flow, 2009, 35, 580-596.	3.4	29
82	Effect of inlet orifice on saturated CHF and flow visualization in multi-microchannel heat sinks. , 2009, , .		29
83	Local measurements and a new flow pattern based model for subcooled and saturated flow boiling heat transfer in multi-microchannel evaporators. International Journal of Heat and Mass Transfer, 2016, 103, 701-714.	4.8	28
84	Flow Boiling and Pressure Drop Measurements for R-134a/Oil Mixtures Part 2: Evaporation in a Plain Tube. HVAC and R Research, 1997, 3, 54-64.	0.6	27
85	3D ALE Finite-Element Method for Two-Phase Flows With Phase Change. Heat Transfer Engineering, 2014, 35, 537-547.	1.9	27
86	Falling film boiling and pool boiling on plain circular tubes: Influence of surface roughness, surface material and saturation temperature on heat transfer and dryout. Experimental Thermal and Fluid Science, 2019, 109, 109870.	2.7	27
87	Two–Phase Pressure Drops in Adiabatic Horizontal Circular Smooth U-Bends and Contiguous Straight Pipes (RP-1444). HVAC and R Research, 2010, 16, 383-397.	0.6	26
88	Flow boiling heat transfer and two-phase flow phenomena of CO2 in macro- and micro-channel evaporators: Fundamentals, applications and engineering design. Applied Thermal Engineering, 2021, 195, 117070.	6.0	26
89	Pressure drop prediction in annular two-phase flow in macroscale tubes and channels. International Journal of Multiphase Flow, 2017, 89, 321-330.	3.4	25
90	On the Prediction of Heat Transfer in Micro-Scale Flow Boiling. Heat Transfer Engineering, 2007, 28, 842-851.	1.9	24

#	Article	IF	CITATIONS
91	Experimental evaluation of the thermal performances of a thermosyphon cooling system rejecting heat by natural and forced convection. Applied Thermal Engineering, 2017, 127, 1404-1415.	6.0	24
92	An indirect criterion for the laminar to turbulent flow transition in shear-driven annular liquid films. International Journal of Multiphase Flow, 2015, 75, 26-38.	3.4	23
93	Effect of Local Hot Spots on the Maximum Dissipation Rates During Flow Boiling in a Microchannel. IEEE Transactions on Components and Packaging Technologies, 2008, 31, 407-416.	1.3	22
94	Online Measurement of Oil Concentrations of R-134a/ Oil Mixtures with a Density Flowmeter. HVAC and R Research, 1995, 1, 232-241.	0.6	21
95	Local Bundle Boiling Heat Transfer Coefficients on a Turbo-BII HP Tube Bundle (RP-1089). HVAC and R Research, 2004, 10, 441-457.	0.6	21
96	Prediction of Local Bundle Boiling Heat Transfer Coefficients: Pure Refrigerant Boiling on Plain, Low Fin, and Turbo-BII HP Tube Bundles. Heat Transfer Engineering, 2006, 27, 20-29.	1.9	21
97	An onset of nucleate boiling criterion for horizontal flow boiling. International Journal of Thermal Sciences, 2000, 39, 909-918.	4.9	20
98	Void Fraction and Two-Phase Pressure Drops for Evaporating Flow over Horizontal Tube Bundles. Heat Transfer Engineering, 2006, 27, 5-21.	1.9	20
99	Boiling on a Tube Bundle: Part II—Heat Transfer and Pressure Drop. Heat Transfer Engineering, 2012, 33, 930-946.	1.9	20
100	Local Bundle Boiling Heat Transfer Coefficients on a Plain Tube Bundle (RP-1089). HVAC and R Research, 2004, 10, 33-51.	0.6	19
101	Conditions of liquid film dryout during saturated flow boiling in microchannels. Chemical Engineering Science, 2008, 63, 5795-5801.	3.8	18
102	TWO-PHASE FLOW AND BOILING OF R245FA IN A 1 MM PRESSING DEPTH PLATE HEAT EXCHANGER - PART I: ADIABATIC PRESSURE DROP. Interfacial Phenomena and Heat Transfer, 2014, 2, 325-342.	0.8	18
103	TWO-PHASE FLOW OF R245FA IN A 1MM CORRUGATION DEPTH PLATE HEAT EXCHANGER - PART II: FLOW BOILING HEAT TRANSFER. Interfacial Phenomena and Heat Transfer, 2014, 2, 343-361.	0.8	18
104	Heat Transfer in Confined Forced-Flow Boiling. Heat Transfer Engineering, 2007, 28, 826-833.	1.9	16
105	Falling film boiling of refrigerants over nanostructured and roughened tubes: Heat transfer, dryout and critical heat flux. International Journal of Heat and Mass Transfer, 2020, 163, 120452.	4.8	16
106	Pool boiling of refrigerants over nanostructured and roughened tubes. International Journal of Heat and Mass Transfer, 2020, 162, 120387.	4.8	15
107	Enhanced boiling of mixtures. Chemical Engineering Science, 1987, 42, 1909-1917.	3.8	14
108	Film Condensation of R-134a and R-236fa, Part 1: Experimental Results and Predictive Correlation for Single-Row Condensation on Enhanced Tubes. Heat Transfer Engineering, 2010, 31, 799-808.	1.9	14

#	Article	IF	CITATIONS
109	Boiling on a Tube Bundle: Part l—Flow Visualization and Onset of Dryout. Heat Transfer Engineering, 2012, 33, 913-929.	1.9	14
110	High resolution infrared measurements of single-phase flow of R245fa and R236fa within a compact plate heat exchanger, Part 1: Experimental setup and pressure drop results. Applied Thermal Engineering, 2016, 101, 545-554.	6.0	14
111	High resolution local heat transfer and pressure drop infrared measurements of two-phase flow of R245fa within a compact plate heat exchanger. International Journal of Heat and Mass Transfer, 2016, 103, 791-806.	4.8	14
112	Local Bundle Boiling Heat Transfer Coefficients on an Integral Finned Tube Bundle (RP-1089). HVAC and R Research, 2004, 10, 331-344.	0.6	13
113	Unified Modeling Suite for Two-Phase Flow, Convective Boiling, and Condensation in Macro- and Microchannels. Heat Transfer Engineering, 2016, 37, 1148-1157.	1.9	13
114	Film condensation under normal and microgravity: Effect of channel shape. Microgravity Science and Technology, 2007, 19, 125-127.	1.4	12
115	Two-Phase Heat Transfer Using No-Phase Flow Models?. Heat Transfer Engineering, 2004, 25, 1-2.	1.9	11
116	Critical Heat Flux During Flow Boiling in Microchannels: A Parametric Study. Heat Transfer Engineering, 2009, 30, 556-563.	1.9	11
117	Microscale Adiabatic Gas–Liquid Annular Two-Phase Flow: Analytical Model Description, Void Fraction, and Pressure Gradient Predictions. Heat Transfer Engineering, 2010, 31, 310-320.	1.9	11
118	Critical Heat Flux of R134a and R245fa Inside Small-Diameter Tubes. Heat Transfer Engineering, 2013, 34, 492-499.	1.9	11
119	Boiling of Ethanol-Water and Ethanol-Benzene Mixtures on an Enhanced Boiling Surface. Heat Transfer Engineering, 1984, 5, 70-81.	1.9	10
120	Numerical modeling of the effects of oil on annular laminar film condensation in minichannels. International Journal of Refrigeration, 2013, 36, 1545-1556.	3.4	10
121	NEW DIABATIC FLOW PATTERN MAP FOR EVAPORATING FLOWS IN MICROCHANNELS. , 2006, , .		10
122	Reboilers with Enhanced Boiling Tubes. Heat Transfer Engineering, 1988, 9, 45-62.	1.9	9
123	Numerical Modeling of the Conjugate Heat Transfer Problem for Annular Laminar Film Condensation in Microchannels. Journal of Heat Transfer, 2012, 134, .	2.1	9
124	Towards development of a passive datacenter cooling technology: On-server thermosyphon cooling loop under dynamic workload. , 2014, , .		9
125	Development of interconnected silicon micro-evaporators for the on-detector electronics cooling of the future ITS detector in the ALICE experiment at LHC. Applied Thermal Engineering, 2016, 93, 1367-1376.	6.0	9
126	Interfaceâ€fitted moving mesh method for axisymmetric twoâ€phase flow in microchannels. International Journal for Numerical Methods in Fluids, 2018, 86, 201-217.	1.6	9

#	Article	IF	CITATIONS
127	A study of gravitational effects on single elongated vapor bubbles. International Journal of Heat and Mass Transfer, 2016, 99, 904-917.	4.8	8
128	Experimental Analysis of the Condenser Design in a Thermosiphon System for Cooling of Telecommunication Electronics. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 963-973.	2.5	7
129	Recent Advances in Thermal Modeling of Micro-Evaporators for Cooling of Microprocessors. , 2007, , 1583.		6
130	Two-phase flow pressure drops in U-tubes: Towards more accurate measurement methods and Aprediction models. International Journal of Refrigeration, 2013, 36, 492-503.	3.4	6
131	Flow Boiling in Microchannels. Advances in Heat Transfer, 2017, 49, 157-224.	0.9	6
132	Air-Cooled Loop Thermosyphon Cooling System for High Heat Load CPUs—Part II: Experimental Results and Validation. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 1687-1694.	2.5	6
133	Simulation and experimental validation of pulsating heat pipes. Applied Thermal Engineering, 2021, 196, 117271.	6.0	6
134	Nucleate Pool Boiling of Hydrocarbon Mixtures on a Gewa-TX Tube. Heat Transfer Engineering, 1989, 10, 37-44.	1.9	5
135	PASSIVE TWO-PHASE THERMOSYPHON LOOP COOLING SYSTEM FOR HIGH-HEAT-FLUX SERVERS. Interfacial Phenomena and Heat Transfer, 2015, 3, 369-391.	0.8	5
136	Two-Phase Pressure Drop., 2015,, 143-176.		5
137	Dynamic Numerical Microchannel Evaporator Model to Investigate Parallel Channel Instabilities. Journal of Electronic Packaging, Transactions of the ASME, 2016, 138, .	1.8	5
138	A Numerical Study of Pulsating Heat Pipe Performance. , 2015, , .		4
139	Flow Boiling Inside Microfin Tubes: Recent Results and Design Methods. , 1999, , 467-486.		4
140	Void Fraction Prediction in Annular Two-Phase Flow Using an Algebraic Turbulence Model. Microgravity Science and Technology, 2010, 22, 425-431.	1.4	3
141	Thermal Management of Ultra Intense Hot Spots With Two-Phase Multi-Microchannels and Embedded Thermoelectric Cooling. , 2013, , .		3
142	Two-Phase Flow Pattern Maps for Microchannels. , 2015, , 47-84.		3
143	Role of a Liquid Accumulator in a Passive Two-Phase Liquid Cooling System for Electronics: Experimental Analysis. Journal of Electronic Packaging, Transactions of the ASME, 2018, 140, .	1.8	3

General Thermosyphon Simulation Code for Electronics Cooling Applications. , 2020, , .

3

Јони R Thome

#	Article	IF	CITATIONS
145	Implementation of Passive Two-Phase Cooling to an Entire Server Rack. , 2020, , .		3
146	Boiling Heat Transfer in Binary Liquid Mixtures. , 1983, , 275-319.		3
147	OPTICAL MEASUREMENTS TO CHARACTERIZE TWO-PHASE FLUID FLOW IN MICROCHANNELS. Multiphase Science and Technology, 2007, 19, 75-97.	0.5	2
148	Conjugate Heat Transfer in Annular Laminar Film Condensation in Microchannels: Comparison of Numerical Model to Experimental Results. , 2010, , .		2
149	3D Stacks of Microprocessors and Memories With Backside Two-Phase Multi-Microchannel Cooler. , 2013, , .		2
150	Novel Dynamic Numerical Microchannel Evaporator Model to Investigate Parallel Channel Instabilities. , 2015, , .		2
151	Two-Phase Flow Pattern Maps for Macrochannels. , 2015, , 5-45.		2
152	Entrained Liquid Fraction in Annular Two-Phase Flow. , 2015, , 113-142.		2
153	Flow Pattern-Based Boiling Heat Transfer and Frictional Pressure Drop Models for Plain Horizontal Tubes. , 2015, , 355-394.		2
154	Two-Phase Thermosyphon Cooling of Datacenters. , 2018, , 157-219.		2
155	1D Mechanistic Model and Simulation Code for Closed-Loop Pulsating Heat Pipes. , 2018, , 141-208.		2
156	One―and twoâ€step semi‣agrangian integrators for arbitrary Lagrangian–Eulerianâ€finite element twoâ€phase flow simulations. International Journal for Numerical Methods in Fluids, 2022, 94, 632-654.	1.6	2
157	Numerical Modeling of the Conjugate Heat Transfer Problem for Annular Laminar Film Condensation in Microchannels. , 2009, , .		1
158	Experimental Adiabatic Two-Phase Pressure Drops of R134a, R236fa and R245fa in Small Horizontal Circular Channels. , 2011, , .		1
159	Void Fraction. , 2015, , 85-112.		1
160	Electronic Micro-Evaporator Cooling Systems and Flow Control. , 2015, , 229-260.		1
161	Two-Phase Flow Simulations Within Plate Heat Exchangers. , 2018, , .		1
162	Numerical Simulations of Pulsating Heat Pipes, Part 2: Comparison to Experimental Data. , 2019, , .		1

Јони R Thome

#	Article	IF	CITATIONS
163	Forced Convective Boiling. , 2015, , 177-218.		0
164	Critical Heat Flux in Convective Boiling. , 2015, , 219-239.		0
165	Unified Modeling Suite for Annular Flow. , 2015, , 241-258.		0
166	Multi-Microchannel Evaporators: Flow Stabilization and Mapping for Safe Operation. , 2015, , 137-177.		0
167	Dynamic Modeling of On-Chip Two-Phase Cooling System with Multiple Micro-Evaporators in Parallel Flow. , 2015, , 179-227.		0
168	Pool Boiling on Plain and Enhanced Surfaces. , 2015, , 53-100.		0
169	Flooded Evaporators Using Smooth and Enhanced Tubes. , 2015, , 101-144.		0
170	Flow Boiling Heat Transfer in Multiport Tubes. , 2015, , 395-444.		0
171	Pragmatical Numerical Simulation of Condensation and Evaporation in Microchannels. , 2015, , 177-199.		0
172	Flow Pattern-Based Intube Condensation Heat Transfer Model for Horizontal Tubes. , 2015, , 201-230.		0
173	Two-Phase Flows in U-bends. , 2015, , 141-182.		Ο
174	Two-Phase On-Chip Cooling Systems for Green Data Centers. , 2012, , 513-567.		0
175	Application of Enhanced Boiling Tubes to Reboilers. , 1988, , 747-778.		0
176	Flow Boiling of Refrigerant-Oil Mixtures in Plain and Enhanced Tubes. , 1999, , 487-513.		0

11