Yingzi Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11300421/publications.pdf

Version: 2024-02-01

30	959	16	29
papers	citations	h-index	g-index
30	30	30	1077
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	MRIâ€only based synthetic CT generation using dense cycle consistent generative adversarial networks. Medical Physics, 2019, 46, 3565-3581.	1.6	181
2	Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic <scp>MRI</scp> prostate segmentation. Medical Physics, 2019, 46, 1707-1718.	1.6	151
3	CBCTâ€based synthetic CT generation using deepâ€attention cycleGAN for pancreatic adaptive radiotherapy. Medical Physics, 2020, 47, 2472-2483.	1.6	113
4	CT prostate segmentation based on synthetic MRIâ€aided deep attention fully convolution network. Medical Physics, 2020, 47, 530-540.	1.6	66
5	MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method. Physics in Medicine and Biology, 2019, 64, 145015.	1.6	53
6	MRI-based treatment planning for liver stereotactic body radiotherapy: validation of a deep learning-based synthetic CT generation method. British Journal of Radiology, 2019, 92, 20190067.	1.0	52
7	Evaluation of a deep learning-based pelvic synthetic CT generation technique for MRI-based prostate proton treatment planning. Physics in Medicine and Biology, 2019, 64, 205022.	1.6	45
8	CTâ€based multiâ€organ segmentation using a 3D selfâ€attention Uâ€net network for pancreatic radiotherapy. Medical Physics, 2020, 47, 4316-4324.	1.6	35
9	Head and neck multiâ€organ autoâ€segmentation on CT images aided by synthetic MRI. Medical Physics, 2020, 47, 4294-4302.	1.6	31
10	Intensity non-uniformity correction in MR imaging using residual cycle generative adversarial network. Physics in Medicine and Biology, 2020, 65, 215025.	1.6	27
11	Development of a transportable neutron activation analysis system to quantify manganese in bone <i>in vivo</i> : feasibility and methodology. Physiological Measurement, 2013, 34, 1593-1609.	1.2	26
12	MRI-Based Proton Treatment Planning for Base of Skull Tumors. International Journal of Particle Therapy, 2019, 6, 12-25.	0.9	24
13	Deep learning-based image quality improvement for low-dose computed tomography simulation in radiation therapy. Journal of Medical Imaging, 2019, 6, 1.	0.8	23
14	A compact DD neutron generator–based NAA system to quantify manganese (Mn) in bone <i>in vivo</i> Physiological Measurement, 2014, 35, 1899-1911.	1.2	22
15	The association of bone, fingernail and blood manganese with cognitive and olfactory function in Chinese workers. Science of the Total Environment, 2019, 666, 1003-1010.	3.9	18
16	Development of a Cumulative Exposure Index (CEI) for Manganese and Comparison with Bone Manganese and Other Biomarkers of Manganese Exposure. International Journal of Environmental Research and Public Health, 2018, 15, 1341.	1.2	17
17	Customized compact neutron activation analysis system to quantify manganese (Mn) in bone <i>in vivo</i> . Physiological Measurement, 2017, 38, 452-465.	1.2	13
18	<i>In vivo</i> neutron activation analysis of bone manganese in workers. Physiological Measurement, 2018, 39, 035003.	1.2	12

#	Article	IF	CITATIONS
19	In vivo measurement of bone manganese and association with manual dexterity: A pilot study. Environmental Research, 2018, 160, 35-38.	3.7	12
20	Characterization of bone aluminum, a potential biomarker of cumulative exposure, within an occupational population from Zunyi, China. Journal of Trace Elements in Medicine and Biology, 2020, 59, 126469.	1.5	8
21	Compact DD generator-based neutron activation analysis (NAA) system to determine fluorine in human bonein vivo: a feasibility study. Physiological Measurement, 2015, 36, 2057-2067.	1.2	7
22	Microdistribution of lead in human teeth using microbeam synchrotron radiation X-ray fluorescence (\hat{l}_4 -SRXRF). X-Ray Spectrometry, 2017, 46, 19-26.	0.9	6
23	Compact DD generator-based <i>in vivo </i> neutron activation analysis (IVNAA) system to determine sodium concentrations in human bone. Physiological Measurement, 2018, 39, 055004.	1.2	5
24	A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis. Health Physics, 2015, 109, 566-572.	0.3	3
25	The study ofin vivoquantification of aluminum (Al) in human bone with a compact DD generator-based neutron activation analysis (NAA) system. Physiological Measurement, 2016, 37, 649-660.	1.2	3
26	The association of bone and blood manganese with motor function in Chinese workers. NeuroToxicology, 2022, 88, 224-230.	1.4	2
27	Automatic inverse treatment planning of Gamma Knife radiosurgery via deep reinforcement learning. Medical Physics, 2022, 49, 2877-2889.	1.6	2
28	A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors. Medical Physics, 2017, 44, 637-643.	1.6	1
29	MRI classification using semantic random forest with auto-context model. Quantitative Imaging in Medicine and Surgery, 2021, 11 , 4753-4766.	1.1	1
30	Machine learning for tracking planned versus delivered dose in pancreas SBRT Journal of Clinical Oncology, 2022, 40, 561-561.	0.8	0