Albert-Lszl Barabsi

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/11300397/albert-lasz lo-barabasi-publications-by-citations.pdf$

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

102,619 187 198 99 h-index g-index citations papers 8.81 120,362 16.4 198 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
187	Emergence of scaling in random networks. <i>Science</i> , 1999 , 286, 509-12	33.3	22075
186	Statistical mechanics of complex networks. <i>Reviews of Modern Physics</i> , 2002 , 74, 47-97	40.5	13246
185	Error and attack tolerance of complex networks. <i>Nature</i> , 2000 , 406, 378-82	50.4	5753
184	Network biology: understanding the cell's functional organization. <i>Nature Reviews Genetics</i> , 2004 , 5, 101-13	30.1	5439
183	Understanding individual human mobility patterns. <i>Nature</i> , 2008 , 453, 779-82	50.4	3903
182	Network medicine: a network-based approach to human disease. <i>Nature Reviews Genetics</i> , 2011 , 12, 56	- 6% 0.1	2899
181	Diameter of the World-Wide Web. <i>Nature</i> , 1999 , 401, 130-131	50.4	2869
180	The human disease network. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 8685-90	11.5	2380
179	Limits of predictability in human mobility. <i>Science</i> , 2010 , 327, 1018-21	33.3	2015
178	Controllability of complex networks. <i>Nature</i> , 2011 , 473, 167-73	50.4	2001
177	Social science. Computational social science. <i>Science</i> , 2009 , 323, 721-3	33.3	1961
176	The origin of bursts and heavy tails in human dynamics. <i>Nature</i> , 2005 , 435, 207-11	50.4	1527
175	Mean-field theory for scale-free random networks. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1999 , 272, 173-187	3.3	1501
174	Drug-target network. <i>Nature Biotechnology</i> , 2007 , 25, 1119-26	44.5	1328
173	Hierarchical organization in complex networks. <i>Physical Review E</i> , 2003 , 67, 026112	2.4	1273
172	Scale-free networks: a decade and beyond. <i>Science</i> , 2009 , 325, 412-3	33.3	1243
171	Interactome networks and human disease. <i>Cell</i> , 2011 , 144, 986-98	56.2	1187

170	Quantifying social group evolution. <i>Nature</i> , 2007 , 446, 664-7	50.4	1117
169	High-quality binary protein interaction map of the yeast interactome network. <i>Science</i> , 2008 , 322, 104-1	1 3 3.3	1100
168	A proteome-scale map of the human interactome network. <i>Cell</i> , 2014 , 159, 1212-1226	56.2	898
167	Topology of evolving networks: local events and universality. <i>Physical Review Letters</i> , 2000 , 85, 5234-7	7.4	842
166	Scale-free characteristics of random networks: the topology of the world-wide web. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2000 , 281, 69-77	3.3	819
165	Disease networks. Uncovering disease-disease relationships through the incomplete interactome. <i>Science</i> , 2015 , 347, 1257601	33.3	767
164	A universal model for mobility and migration patterns. <i>Nature</i> , 2012 , 484, 96-100	50.4	760
163	Modelling the scaling properties of human mobility. <i>Nature Physics</i> , 2010 , 6, 818-823	16.2	729
162	Evidence for network evolution in an Arabidopsis interactome map. <i>Science</i> , 2011 , 333, 601-7	33.3	689
161	An empirical framework for binary interactome mapping. <i>Nature Methods</i> , 2009 , 6, 83-90	21.6	674
160	A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. <i>Cell</i> , 2006 , 125, 801-14	56.2	637
159	Universal resilience patterns in complex networks. <i>Nature</i> , 2016 , 530, 307-12	50.4	520
158	Functional and topological characterization of protein interaction networks. <i>Proteomics</i> , 2004 , 4, 928-43	24.8	468
157	Bose-Einstein condensation in complex networks. <i>Physical Review Letters</i> , 2001 , 86, 5632-5	7.4	445
156	Modeling the Internet's large-scale topology. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 13382-6	11.5	440
155	Quantifying long-term scientific impact. <i>Science</i> , 2013 , 342, 127-32	33.3	439
154	Dynamic scaling of ion-sputtered surfaces. <i>Physical Review Letters</i> , 1995 , 74, 4746-4749	7.4	432
153	Modeling bursts and heavy tails in human dynamics. <i>Physical Review E</i> , 2006 , 73, 036127	2.4	412

ALBERT-L?ZL?BARAB?

152	Morphology of ion-sputtered surfaces. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2002 , 197, 185-227	1.2	412
151	A dynamic network approach for the study of human phenotypes. <i>PLoS Computational Biology</i> , 2009 , 5, e1000353	5	400
150	Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. <i>Molecular Systems Biology</i> , 2007 , 3, 124	12.2	397
149	Network medicinefrom obesity to the "diseasome". New England Journal of Medicine, 2007, 357, 404-7	7 59.2	391
148	Science of science. <i>Science</i> , 2018 , 359,	33.3	373
147	Uncovering individual and collective human dynamics from mobile phone records. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2008 , 41, 224015	2	373
146	Systems biology. Life's complexity pyramid. <i>Science</i> , 2002 , 298, 763-4	33.3	370
145	Halting viruses in scale-free networks. <i>Physical Review E</i> , 2002 , 65, 055103	2.4	366
144	Human mobility, social ties, and link prediction 2011,		363
143	Understanding the spreading patterns of mobile phone viruses. <i>Science</i> , 2009 , 324, 1071-6	33.3	353
142	Widespread macromolecular interaction perturbations in human genetic disorders. <i>Cell</i> , 2015 , 161, 647	-6602	343
141	Human symptoms-disease network. <i>Nature Communications</i> , 2014 , 5, 4212	17.4	340
140	Deterministic scale-free networks. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2001 , 299, 559-5	6 4 .3	308
139	Observability of complex systems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 2460-5	11.5	307
138	Spectra of "real-world" graphs: beyond the semicircle law. <i>Physical Review E</i> , 2001 , 64, 026704	2.4	305
137	Dislocation-Free Island Formation in Heteroepitaxial Growth: A Study at Equilibrium. <i>Physical Review Letters</i> , 1997 , 79, 3708-3711	7.4	303
136	Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. <i>Nature</i> , 2012 , 487, 491-5	50.4	294
135	Control principles of complex systems. Reviews of Modern Physics, 2016, 88,	40.5	292

(2015-1991)

134	Multifractality of self-affine fractals. <i>Physical Review A</i> , 1991 , 44, 2730-2733	2.6	282
133	Quantifying the evolution of individual scientific impact. <i>Science</i> , 2016 , 354,	33.3	258
132	Human dynamics: Darwin and Einstein correspondence patterns. <i>Nature</i> , 2005 , 437, 1251	50.4	258
131	Analysis of a large-scale weighted network of one-to-one human communication. <i>New Journal of Physics</i> , 2007 , 9, 179-179	2.9	249
130	Two degrees of separation in complex food webs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 12913-6	11.5	244
129	Impact of non-Poissonian activity patterns on spreading processes. <i>Physical Review Letters</i> , 2007 , 98, 158702	7.4	242
128	Network-based in silico drug efficacy screening. <i>Nature Communications</i> , 2016 , 7, 10331	17.4	240
127	Self-assembled island formation in heteroepitaxial growth. <i>Applied Physics Letters</i> , 1997 , 70, 2565-2567	3.4	237
126	Avalanches and power-law behaviour in lung inflation. <i>Nature</i> , 1994 , 368, 615-8	50.4	237
125	Target control of complex networks. <i>Nature Communications</i> , 2014 , 5, 5415	17.4	232
124	The exposome and health: Where chemistry meets biology. <i>Science</i> , 2020 , 367, 392-396	33.3	231
123	Flavor network and the principles of food pairing. Scientific Reports, 2011, 1, 196	4.9	231
122	Network-based prediction of drug combinations. <i>Nature Communications</i> , 2019 , 10, 1197	17.4	216
121	Ion-induced effective surface diffusion in ion sputtering. <i>Applied Physics Letters</i> , 1997 , 71, 2800-2802	3.4	211
120	Network-based approach to prediction and population-based validation of in silico drug repurposing. <i>Nature Communications</i> , 2018 , 9, 2691	17.4	208
119	MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. <i>Circulation</i> , 2012 , 125, 1520-32	16.7	207
118	Universal features of correlated bursty behaviour. <i>Scientific Reports</i> , 2012 , 2, 397	4.9	205
117	Returners and explorers dichotomy in human mobility. <i>Nature Communications</i> , 2015 , 6, 8166	17.4	200

116	Geographic constraints on social network groups. <i>PLoS ONE</i> , 2011 , 6, e16939	3.7	199
115	Collective response of human populations to large-scale emergencies. <i>PLoS ONE</i> , 2011 , 6, e17680	3.7	193
114	Control centrality and hierarchical structure in complex networks. <i>PLoS ONE</i> , 2012 , 7, e44459	3.7	192
113	A DiseAse MOdule Detection (DIAMOnD) algorithm derived from a systematic analysis of connectivity patterns of disease proteins in the human interactome. <i>PLoS Computational Biology</i> , 2015 , 11, e1004120	5	189
112	Network science. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2013 , 371, 20120375	3	185
111	Universality in network dynamics. <i>Nature Physics</i> , 2013 , 9,	16.2	183
110	Network link prediction by global silencing of indirect correlations. <i>Nature Biotechnology</i> , 2013 , 31, 720	- 5 44.5	178
109	Dynamics of complex systems: scaling laws for the period of boolean networks. <i>Physical Review Letters</i> , 2000 , 84, 5660-3	7.4	176
108	The impact of cellular networks on disease comorbidity. <i>Molecular Systems Biology</i> , 2009 , 5, 262	12.2	175
107	Spectrum of controlling and observing complex networks. <i>Nature Physics</i> , 2015 , 11, 779-786	16.2	173
106	Historical comparison of gender inequality in scientific careers across countries and disciplines. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 4609-4616	11.5	165
105	Network-based prediction of protein interactions. <i>Nature Communications</i> , 2019 , 10, 1240	17.4	156
104	Emergence of bimodality in controlling complex networks. <i>Nature Communications</i> , 2013 , 4, 2002	17.4	156
103	Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 4976-81	11.5	155
102	Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. <i>BMC Bioinformatics</i> , 2004 , 5, 10	3.6	151
101	Effect of correlations on network controllability. Scientific Reports, 2013, 3, 1067	4.9	131
100	Modules, networks and systems medicine for understanding disease and aiding diagnosis. <i>Genome Medicine</i> , 2014 , 6, 82	14.4	126
99	PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation. <i>Nature Communications</i> , 2016 , 7, 12849	17.4	120

98	Ranking stability and super-stable nodes in complex networks. <i>Nature Communications</i> , 2011 , 2, 394	17.4	118
97	Collective credit allocation in science. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 12325-30	11.5	113
96	A disease module in the interactome explains disease heterogeneity, drug response and captures novel pathways and genes in asthma. <i>Human Molecular Genetics</i> , 2015 , 24, 3005-20	5.6	108
95	Predicting synthetic rescues in metabolic networks. <i>Molecular Systems Biology</i> , 2008 , 4, 168	12.2	107
94	The Architecture of Complexity. IEEE Control Systems, 2007, 27, 33-42	2.9	102
93	Sociology. Network theorythe emergence of the creative enterprise. <i>Science</i> , 2005 , 308, 639-41	33.3	102
92	Quantitative social science. A network framework of cultural history. <i>Science</i> , 2014 , 345, 558-62	33.3	101
91	The unmapped chemical complexity of our diet. <i>Nature Food</i> , 2020 , 1, 33-37	14.4	99
90	Control capacity and a random sampling method in exploring controllability of complex networks. <i>Scientific Reports</i> , 2013 , 3, 2354	4.9	93
89	Career on the move: geography, stratification, and scientific impact. Scientific Reports, 2014, 4, 4770	4.9	92
88	A century of physics. <i>Nature Physics</i> , 2015 , 11, 791-796	16.2	91
87	Viral perturbations of host networks reflect disease etiology. <i>PLoS Computational Biology</i> , 2012 , 8, e10	03531	90
86	Time to CARE: a collaborative engine for practical disease prediction. <i>Data Mining and Knowledge Discovery</i> , 2010 , 20, 388-415	5.6	90
85	Bioinformatics analysis of experimentally determined protein complexes in the yeast Saccharomyces cerevisiae. <i>Genome Research</i> , 2003 , 13, 2450-4	9.7	89
84	Predicting perturbation patterns from the topology of biological networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E6375-E6383	11.5	88
83	Impact of the solvent capacity constraint on E. coli metabolism. <i>BMC Systems Biology</i> , 2008 , 2, 7	3.5	87
82	Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. <i>Cardiovascular Research</i> , 2017 , 113, 725-736	9.9	85
81	Distribution of node characteristics in complex networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 17916-20	11.5	85

ALBERT-L?ZL?BARAB?

80	Transcription factor modularity in a gene-centered C. elegans core neuronal protein-DNA interaction network. <i>Genome Research</i> , 2007 , 17, 1061-71	9.7	80
79	Network medicine framework for identifying drug-repurposing opportunities for COVID-19. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	77
78	Sex differences in intimate relationships. <i>Scientific Reports</i> , 2012 , 2, 370	4.9	67
77	Equilibrium phase diagrams for dislocation free self-assembled quantum dots. <i>Applied Physics Letters</i> , 1998 , 72, 2102-2104	3.4	63
76	Tissue Specificity of Human Disease Module. <i>Scientific Reports</i> , 2016 , 6, 35241	4.9	62
75	Multifractality of growing surfaces. <i>Physical Review A</i> , 1992 , 45, R6951-R6954	2.6	60
74	Scaling identity connects human mobility and social interactions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 7047-52	11.5	58
73	Information spreading in context 2011 ,		56
72	Endophenotype Network Models: Common Core of Complex Diseases. <i>Scientific Reports</i> , 2016 , 6, 2741	44.9	55
71	Predicting individual disease risk based on medical history 2008,		55
70	The physics of the Web. <i>Physics World</i> , 2001 , 14, 33-38	0.5	51
69	Constructing minimal models for complex system dynamics. <i>Nature Communications</i> , 2015 , 6, 7186	17.4	50
68	The universal decay of collective memory and attention. <i>Nature Human Behaviour</i> , 2019 , 3, 82-91	12.8	49
67	Avalanches in the lung: A statistical mechanical model. <i>Physical Review Letters</i> , 1996 , 76, 2192-2195	7.4	46
66	Controlling nanostructures. <i>Nature</i> , 1994 , 368, 22-22	50.4	44
65	The chaperone effect in scientific publishing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 12603-12607	11.5	44
64	Stable evolutionary signal in a yeast protein interaction network. <i>BMC Evolutionary Biology</i> , 2006 , 6, 8	3	43
63	From data to models. <i>Nature Physics</i> , 2007 , 3, 224-225	16.2	41

62	Comparison of an expanded ataxia interactome with patient medical records reveals a relationship between macular degeneration and ataxia. <i>Human Molecular Genetics</i> , 2011 , 20, 510-27	5.6	40
61	Spatial ordering of islands grown on patterned surfaces. <i>Applied Physics Letters</i> , 1998 , 73, 2651-2653	3.4	40
60	Dynamics of ranking processes in complex systems. <i>Physical Review Letters</i> , 2012 , 109, 128701	7.4	38
59	Controllability of multiplex, multi-time-scale networks. <i>Physical Review E</i> , 2016 , 94, 032316	2.4	37
58	Fundamental limitations of network reconstruction from temporal data. <i>Journal of the Royal Society Interface</i> , 2017 , 14,	4.1	36
57	Quantifying information flow during emergencies. Scientific Reports, 2014, 4, 3997	4.9	36
56	Integrating personalized gene expression profiles into predictive disease-associated gene pools. <i>Npj Systems Biology and Applications</i> , 2017 , 3, 10	5	34
55	Uncovering the role of elementary processes in network evolution. <i>Scientific Reports</i> , 2013 , 3, 2920	4.9	32
54	Social Group Dynamics in Networks. <i>Understanding Complex Systems</i> , 2009 , 11-38	0.4	32
53	An inter-species protein-protein interaction network across vast evolutionary distance. <i>Molecular Systems Biology</i> , 2016 , 12, 865	12.2	31
52	Network science: Destruction perfected. <i>Nature</i> , 2015 , 524, 38-9	50.4	29
51	Effect of surface morphology on the sputtering yields. II. Ion sputtering from rippled surfaces. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2004 , 222, 335-354	1.2	26
50	Network-based analysis of genome wide association data provides novel candidate genes for lipid and lipoprotein traits. <i>Molecular and Cellular Proteomics</i> , 2013 , 12, 3398-408	7.6	24
49	Identifying and modeling the structural discontinuities of human interactions. <i>Scientific Reports</i> , 2017 , 7, 46677	4.9	22
48	A structural transition in physical networks. <i>Nature</i> , 2018 , 563, 676-680	50.4	22
47	Publishing: Handful of papers dominates citation. <i>Nature</i> , 2012 , 491, 40	50.4	21
46	Inhomogeneous evolution of subgraphs and cycles in complex networks. <i>Physical Review E</i> , 2005 , 71, 025103	2.4	21
45	Secondary ion yield changes on rippled interfaces. <i>Applied Physics Letters</i> , 1998 , 72, 906-908	3.4	21

44	Systems Medicine: from molecular features and models to the clinic in COPD. <i>Journal of Translational Medicine</i> , 2014 , 12 Suppl 2, S4	8.5	20
43	A Genetic Model of the Connectome. <i>Neuron</i> , 2020 , 105, 435-445.e5	13.9	20
42	A diVIsive Shuffling Approach (VIStA) for gene expression analysis to identify subtypes in Chronic Obstructive Pulmonary Disease. <i>BMC Systems Biology</i> , 2014 , 8 Suppl 2, S8	3.5	19
41	A wealth of discovery built on the Human Genome Project - by the numbers. <i>Nature</i> , 2021 , 590, 212-215	50.4	19
40	Trade-offs between driving nodes and time-to-control in complex networks. <i>Scientific Reports</i> , 2017 , 7, 39978	4.9	18
39	Success in books: a big data approach to bestsellers. <i>EPJ Data Science</i> , 2018 , 7,	3.4	18
38	The Architecture of Biological Networks 2006 , 165-181		18
37	Thermodynamic and kinetic mechanisms in self-assembled quantum dot formation. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1999 , 67, 23-30	3.1	18
36	WIPER: The Integrated Wireless Phone Based Emergency Response System. <i>Lecture Notes in Computer Science</i> , 2006 , 417-424	0.9	16
35	From comorbidities of chronic obstructive pulmonary disease to identification of shared molecular mechanisms by data integration. <i>BMC Bioinformatics</i> , 2016 , 17, 441	3.6	16
34	and the network control framework-FAQs. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2018 , 373,	5.8	16
33	Network medicine framework shows that proximity of polyphenol targets and disease proteins predicts therapeutic effects of polyphenols. <i>Nature Food</i> , 2021 , 2, 143-155	14.4	14
32	Controllability in an islet specific regulatory network identifies the transcriptional factor NFATC4, which regulates Type 2 Diabetes associated genes. <i>Npj Systems Biology and Applications</i> , 2018 , 4, 25	5	14
31	Discovering the genes mediating the interactions between chronic respiratory diseases in the human interactome. <i>Nature Communications</i> , 2020 , 11, 811	17.4	13
30	Understanding the spread of malicious mobile-phone programs and their damage potential. <i>International Journal of Information Security</i> , 2013 , 12, 383-392	2.8	12
29	Liu et al. reply. <i>Nature</i> , 2011 , 478, E4-E5	50.4	12
28	A genetic epidemiology approach to cyber-security. Scientific Reports, 2014, 4, 5659	4.9	11
27	Roughening of growing surfaces: Kinetic models and continuum theories. <i>Computational Materials Science</i> , 1996 , 6, 127-134	3.2	11

26	COMMUNITY DYNAMICS IN SOCIAL NETWORKS. Fluctuation and Noise Letters, 2007, 07, L273-L287	1.2	8
25	Uncovering the genetic blueprint of the nervous system. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 33570-33577	11.5	7
24	Emergence of scaling in complex networks 2004 , 69-84		7
23	Network-based prediction of protein interactions		7
22	Power Laws in Biological Networks 2006 , 1-11		6
21	A global network for network medicine. <i>Npj Systems Biology and Applications</i> , 2020 , 6, 29	5	6
20	Viva Europa, a Land of Excellence in Research and Innovation for Health and Wellbeing. <i>Progress in Preventive Medicine (New York, N Y)</i> , 2017 , 2, e006	0.7	5
19	Community dynamics in social networks 2007 ,		5
18	Characteristics of Biological Networks. <i>Lecture Notes in Physics</i> , 2004 , 443-457	0.8	4
17	Isotopy and energy of physical networks. <i>Nature Physics</i> , 2021 , 17, 216-222	16.2	4
17 16	Isotopy and energy of physical networks. <i>Nature Physics</i> , 2021 , 17, 216-222 Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19 2020 ,	16.2	4
		16.2 4·9	
16	Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19 2020 ,		4
16 15	Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19 2020 , Quantifying NFT-driven networks in crypto art <i>Scientific Reports</i> , 2022 , 12, 2769	4.9	4
16 15 14	Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19 2020 , Quantifying NFT-driven networks in crypto art <i>Scientific Reports</i> , 2022 , 12, 2769 Graph Theory Properties of Cellular Networks 2013 , 177-193 Science communication. Response to Comment on "Quantifying long-term scientific impact".	4.9	4 4 3
16 15 14	Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19 2020, Quantifying NFT-driven networks in crypto art <i>Scientific Reports</i> , 2022, 12, 2769 Graph Theory Properties of Cellular Networks 2013, 177-193 Science communication. Response to Comment on "Quantifying long-term scientific impact". <i>Science</i> , 2014, 345, 149	4.9	4 4 3 3
16 15 14 13 12	Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19 2020, Quantifying NFT-driven networks in crypto art <i>Scientific Reports</i> , 2022, 12, 2769 Graph Theory Properties of Cellular Networks 2013, 177-193 Science communication. Response to Comment on "Quantifying long-term scientific impact". <i>Science</i> , 2014, 345, 149 Predicting perturbation patterns from the topology of biological networks	4·9 33·3	4 4 3 3

8	SURFACTANT-MEDIATED SURFACE GROWTH: NONEQUILIBRIUM THEORY. Fractals, 1993, 01, 846-859	3.2	2
7	Uncovering the genetic blueprint of theC. elegansnervous system		2
6	Reverse engineering of linking preferences from network restructuring. <i>Physical Review E</i> , 2004 , 70, 046115	2.4	1
5	Controllability in an islet specific regulatory network identifies the transcriptional factor NFATC4, which regulates Type 2 Diabetes associated genes		1
4	Recovery coupling in multilayer networks <i>Nature Communications</i> , 2022 , 13, 955	17.4	1
3	THE ARCHITECTURE OF COMPLEXITY: FROM WWW TO CELLULAR METABOLISM 2006 , 107-125		О
2	Metabolic Networks 2005 , 243-264		

SURFACTANT-MEDIATED SURFACE GROWTH: NONEQUILIBRIUM THEORY **1994**, 472-485