Sergei M Bachilo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/112991/publications.pdf

Version: 2024-02-01

122 papers 13,759 citations

94433 37 h-index 28297 105 g-index

127 all docs

127 does citations

times ranked

127

9879 citing authors

#	Article	IF	CITATIONS
1	Near-infrared photoluminescence of Portland cement. Scientific Reports, 2022, 12, 1197.	3.3	7
2	Guanine-Specific Chemical Reaction Reveals ssDNA Interactions on Carbon Nanotube Surfaces. Journal of Physical Chemistry Letters, 2022, 13, 2231-2236.	4.6	8
3	(Invited) Camera-Based Strain Visualization Using Carbon Nanotube Fluorescence. ECS Meeting Abstracts, 2022, MA2022-01, 754-754.	0.0	O
4	Exploring the Role of Photosensitizer in Guanine Functionalization of Single-Wall Carbon Nanotubes. ECS Meeting Abstracts, 2022, MA2022-01, 732-732.	0.0	0
5	(Digital Presentation) Realistic Molecular Dynamics Modeling of ssDNA/SWCNT Hybrids. ECS Meeting Abstracts, 2022, MA2022-01, 715-715.	0.0	O
6	Next-generation 2D optical strain mapping with strain-sensing smart skin compared to digital image correlation. Scientific Reports, 2022, 12, .	3.3	6
7	DNA Wrapping Causes Strain in Single-Wall Carbon Nanotubes. ECS Meeting Abstracts, 2022, MA2022-01, 719-719.	0.0	O
8	Exploring the Covalent Doping of Single-Wall Carbon Nanotubes Induced By Photoexcited Hypochlorite. ECS Meeting Abstracts, 2022, MA2022-01, 733-733.	0.0	0
9	(Invited) Progress in Using Carbon Nanotube Spectra for Mechanical Strain Sensing. ECS Meeting Abstracts, 2021, MA2021-01, 568-568.	0.0	O
10	(Invited) Computational Simulations of Selective Interactions between ssDNA and SWCNTs. ECS Meeting Abstracts, 2021, MA2021-01, 582-582.	0.0	0
11	(Invited) Quantum Light Emission from Coupled Defect-States in DNA-Functionalized Carbon Nanotubes. ECS Meeting Abstracts, 2021, MA2021-01, 559-559.	0.0	O
12	(Invited) Different Pathways of Fluorescent SWCNT Modifications with Aromatic Reactants. ECS Meeting Abstracts, 2021, MA2021-01, 557-557.	0.0	0
13	Tailoring the Spectral Properties of Single-Wall Carbon Nanotube Samples through Structure-Selective Photochemistry. ECS Meeting Abstracts, 2021, MA2021-01, 588-588.	0.0	O
14	(Invited) Toward Spectral Homogeneity in Guanine Functionalized SWCNTs. ECS Meeting Abstracts, 2021, MA2021-01, 552-552.	0.0	0
15	(Invited) Spectroscopic Titration Shows (n,m)-Dependent Displacement of SDS By ssDNA on Single-Wall Carbon Nanotubes. ECS Meeting Abstracts, 2021, MA2021-01, 543-543.	0.0	0
16	Quantum Light Emission from Coupled Defect States in DNA-Functionalized Carbon Nanotubes. ACS Nano, 2021, 15, 10406-10414.	14.6	22
17	Photoexcited Aromatic Reactants Give Multicolor Carbon Nanotube Fluorescence from Quantum Defects. ACS Nano, 2020, 14, 715-723.	14.6	32
18	Delayed Fluorescence from Carbon Nanotubes through Singlet Oxygen-Sensitized Triplet Excitons. Journal of the American Chemical Society, 2020, 142, 21189-21196.	13.7	14

#	Article	IF	CITATIONS
19	Tailoring the Properties of Single-Wall Carbon Nanotube Samples through Structure-Selective Near-Infrared Photochemistry. Journal of Physical Chemistry Letters, 2020, 11, 6492-6497.	4.6	4
20	Dye Quenching of Carbon Nanotube Fluorescence Reveals Structure-Selective Coating Coverage. ACS Nano, 2020, 14, 12148-12158.	14.6	15
21	Creating fluorescent quantum defects in carbon nanotubes using hypochlorite and light. Nature Communications, 2019, 10, 2874.	12.8	63
22	Synchro-Excited Free-Running Single Photon Counting: A Novel Method for Measuring Short-Wave Infrared Emission Kinetics. Analytical Chemistry, 2019, 91, 12484-12491.	6.5	2
23	Controlled Patterning of Carbon Nanotube Energy Levels by Covalent DNA Functionalization. ACS Nano, 2019, 13, 8222-8228.	14.6	42
24	Noncontact Strain Mapping Using Laser-Induced Fluorescence from Nanotube-Based Smart Skin. Journal of Structural Engineering, 2019, 145, 04018238.	3.4	11
25	Dualâ€layer nanotubeâ€based smart skin for enhanced noncontact strain sensing. Structural Control and Health Monitoring, 2019, 26, e2279.	4.0	15
26	Indexing the Quality of Single-Wall Carbon Nanotube Dispersions Using Absorption Spectra. Journal of Physical Chemistry C, 2018, 122, 4681-4690.	3.1	12
27	Variance Spectroscopy Studies of Single-Wall Carbon Nanotube Aggregation. Journal of Physical Chemistry C, 2018, 122, 26251-26259.	3.1	4
28	Enantiomers of Single-Wall Carbon Nanotubes Show Distinct Coating Displacement Kinetics. Journal of Physical Chemistry Letters, 2018, 9, 3793-3797.	4.6	24
29	Assessing Inhomogeneity in Sorted Samples of Single-Walled Carbon Nanotubes through Fluorescence and Variance Spectroscopy. ECS Journal of Solid State Science and Technology, 2017, 6, M3097-M3102.	1.8	4
30	Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities. Journal of Physical Chemistry Letters, 2017, 8, 1952-1955.	4.6	35
31	Skewness Analysis in Variance Spectroscopy Measures Nanoparticle Individualization. Journal of Physical Chemistry Letters, 2017, 8, 2924-2929.	4.6	4
32	Full-field, high-spatial-resolution detection of local structural damage from low-resolution random strain field measurements. Journal of Sound and Vibration, 2017, 399, 75-85.	3.9	27
33	Strain-sensing smart skin., 2016,, 353-375.		2
34	Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo. Nanoscale, 2016, 8, 10348-10357.	5.6	20
35	Photoluminescence Side Band Spectroscopy of Individual Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 23898-23904.	3.1	24
36	(<i>n</i> , <i>m</i>)-Specific Absorption Cross Sections of Single-Walled Carbon Nanotubes Measured by Variance Spectroscopy. Nano Letters, 2016, 16, 6903-6909.	9.1	57

#	Article	IF	CITATIONS
37	Toward Practical Non-Contact Optical Strain Sensing Using Single-Walled Carbon Nanotubes. ECS Journal of Solid State Science and Technology, 2016, 5, M3012-M3017.	1.8	16
38	Structure-Dependent Thermal Defunctionalization of Single-Walled Carbon Nanotubes. ACS Nano, 2015, 9, 6324-6332.	14.6	16
39	Variance Spectroscopy. Journal of Physical Chemistry Letters, 2015, 6, 3976-3981.	4.6	13
40	Carbon nanotubes as non-contact optical strain sensors in smart skins. Journal of Strain Analysis for Engineering Design, 2015, 50, 505-512.	1.8	25
41	Structure-dependent Optical Activity of Single-walled Carbon Nanotube Enantiomers. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 269-279.	2.1	6
42	"Smart Skin" optical strain sensor using single wall carbon nanotubes. , 2014, , .		4
43	Enabling <i>in vivo</i> measurements of nanoparticle concentrations with threeâ€dimensional optoacoustic tomography. Journal of Biophotonics, 2014, 7, 581-588.	2.3	24
44	High Precision Fractionator for Use with Density Gradient Ultracentrifugation. Analytical Chemistry, 2014, 86, 11018-11023.	6.5	8
45	Removing Aggregates from Single-Walled Carbon Nanotube Samples by Magnetic Purification. Journal of Physical Chemistry C, 2014, 118, 4489-4494.	3.1	16
46	Directly Measured Optical Absorption Cross Sections for Structure-Selected Single-Walled Carbon Nanotubes. Nano Letters, 2014, 14, 1530-1536.	9.1	96
47	Chromatic Aberration Short-Wave Infrared Spectroscopy: Nanoparticle Spectra without a Spectrometer. Analytical Chemistry, 2013, 85, 1337-1341.	6.5	4
48	Length-dependent optical properties of single-walled carbon nanotube samples. Chemical Physics, 2013, 422, 255-263.	1.9	23
49	Towards non-invasivein vivomeasurements of nanoparticle concentrations using 3D optoacoustic tomography., 2013,,.		2
50	Measuring Single-Walled Carbon Nanotube Length Distributions from Diffusional Trajectories. ACS Nano, 2012, 6, 8424-8431.	14.6	51
51	Strain Paint: Noncontact Strain Measurement Using Single-Walled Carbon Nanotube Composite Coatings. Nano Letters, 2012, 12, 3497-3500.	9.1	51
52	Reversible Formation of Ammonium Persulfate/Sulfuric Acid Graphite Intercalation Compounds and Their Peculiar Raman Spectra. ACS Nano, 2012, 6, 7842-7849.	14.6	95
53	Evidence for Long-lived, Optically Generated Quenchers of Excitons in Single-Walled Carbon Nanotubes. Nano Letters, 2012, 12, 33-38.	9.1	16
54	Efficient Spectrofluorimetric Analysis of Single-Walled Carbon Nanotube Samples. Analytical Chemistry, 2011, 83, 7431-7437.	6.5	36

#	Article	IF	CITATIONS
55	Analyzing Absorption Backgrounds in Single-Walled Carbon Nanotube Spectra. ACS Nano, 2011, 5, 1639-1648.	14.6	142
56	Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nature Nanotechnology, 2010, 5, 443-450.	31.5	527
57	Surfactant-Dependent Exciton Mobility in Single-Walled Carbon Nanotubes Studied by Single-Molecule Reactions. Nano Letters, 2010, 10, 1595-1599.	9.1	88
58	Dependence of Exciton Mobility on Structure in Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2010, 1, 2189-2192.	4.6	37
59	Oxygen Doping Modifies Near-Infrared Band Gaps in Fluorescent Single-Walled Carbon Nanotubes. Science, 2010, 330, 1656-1659.	12.6	323
60	Do Inner Shells of Double-Walled Carbon Nanotubes Fluoresce?. Nano Letters, 2009, 9, 3282-3289.	9.1	42
61	Curvature effects on the <mmi:math inline"="" xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Mith/Color display="><mmi:math display="inline" xmins:mml="http://www.w3.org/1998/Math/Math/Mt" xmlns:mml="http://www.w3.org/1998/Math/Math/Mt"><mmi:msub><mmi:mi>E</mmi:mi><mmi:mn>44</mmi:mn></mmi:msub></mmi:math>exciton</mmi:math>	:math 3.2	39
62	Efficient photosensitized energy transfer and near-IR fluorescence from porphyrin–SWNT complexes. Journal of Materials Chemistry, 2008, 18, 1510.	6.7	70
63	Strain Measurements on Individual Single-Walled Carbon Nanotubes in a Polymer Host: Structure-Dependent Spectral Shifts and Load Transfer. Nano Letters, 2008, 8, 826-831.	9.1	59
64	Translational and Rotational Dynamics of Individual Single-Walled Carbon Nanotubes in Aqueous Suspension. ACS Nano, 2008, 2, 1770-1776.	14.6	58
65	Electric Field Quenching of Carbon Nanotube Photoluminescence. Nano Letters, 2008, 8, 1527-1531.	9.1	23
66	Chirality-Resolved Length Analysis of Single-Walled Carbon Nanotube Samples through Shear-Aligned Photoluminescence Anisotropy. ACS Nano, 2008, 2, 1738-1746.	14.6	31
67	Photophysical Properties of C84Major Isomersâ€. Journal of Physical Chemistry C, 2007, 111, 17720-17724.	3.1	3
68	The purification of HiPco SWCNTs with liquid bromine at room temperature. Carbon, 2007, 45, 1013-1017.	10.3	23
69	Determination of Exciton-Phonon Coupling Elements in Single-Walled Carbon Nanotubes by Raman Overtone Analysis. Physical Review Letters, 2007, 98, 037405.	7.8	61
70	Structure-Dependent Fluorescence Efficiencies of Individual Single-Walled Carbon Nanotubes. Nano Letters, 2007, 7, 3080-3085.	9.1	156
71	Temperature effects on femtosecond transient absorption kinetics of semiconducting single-walled carbon nanotubes. Physical Chemistry Chemical Physics, 2006, 8, 5689.	2.8	13
72	Intense Photoluminescence from Mixed Solutions of C70and Palladium Octaethylporphyrin:Â A Supramolecular Heavy Atom Effect. Journal of Physical Chemistry A, 2006, 110, 10731-10736.	2.5	7

#	Article	IF	CITATIONS
73	Raman studies of electron–phonon coupling in single walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3171-3175.	1.5	1
74	Photorearrangement of \hat{l} ±-Azoxy Ketones and Triplet Sensitization of Azoxy Compounds. Journal of Organic Chemistry, 2005, 70, 2598-2605.	3.2	2
75	Versatile Visualization of Individual Single-Walled Carbon Nanotubes with Near-Infrared Fluorescence Microscopy. Nano Letters, 2005, 5, 975-979.	9.1	140
76	Femtosecond Spectroscopy of Optical Excitations in Single-Walled Carbon Nanotubes: Evidence for Exciton-Exciton Annihilation. Physical Review Letters, 2005, 94, 157402.	7.8	214
77	Thermolysis and Photolysis of C60Diozonides. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 73-88.	2.1	9
78	Exciton Binding Energy in Semiconducting Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 15671-15674.	2.6	110
79	Structure-Dependent Hydrostatic Deformation Potentials of Individual Single-Walled Carbon Nanotubes. Physical Review Letters, 2004, 93, .	7.8	49
80	Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy. Journal of Chemical Physics, 2004, 120, 3368-3373.	3.0	186
81	Fluorescence spectroscopy of single-walled carbon nanotubes in aqueous suspension. Applied Physics A: Materials Science and Processing, 2004, 78, 1111-1116.	2.3	86
82	Pressure dependence of optical transitions in semiconducting single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2004, 241, 3367-3373.	1.5	6
83	Reversible Dimerization of [5,6]-C60O. Journal of the American Chemical Society, 2004, 126, 7350-7358.	13.7	21
84	Near-Infrared Fluorescence Microscopy of Single-Walled Carbon Nanotubes in Phagocytic Cells. Journal of the American Chemical Society, 2004, 126, 15638-15639.	13.7	792
85	Solubilization and Purification of Single-Wall Carbon Nanotubes in Water by in Situ Radical Polymerization of Sodium 4-Styrenesulfonate. Macromolecules, 2004, 37, 3965-3967.	4.8	209
86	Narrow (n,m)-Distribution of Single-Walled Carbon Nanotubes Grown Using a Solid Supported Catalyst. Journal of the American Chemical Society, 2003, 125, 11186-11187.	13.7	807
87	Comparative Photophysics of C61H2Isomersâ€. Journal of Physical Chemistry A, 2003, 107, 10674-10679.	2.5	17
88	Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension:  An Empirical Kataura Plot. Nano Letters, 2003, 3, 1235-1238.	9.1	1,070
89	The Influence of Ir and Pt Addition on the Synthesis of Fullerenes at Atmospheric Pressure. Fullerenes Nanotubes and Carbon Nanostructures, 2003, 11, 371-382.	2.1	4
90	(n,m)-Assigned Absorption and Emission Spectra of Single-Walled Carbon Nanotubes. AIP Conference Proceedings, 2003, , .	0.4	2

#	Article	IF	Citations
91	Ozonides, Epoxides, and Oxidoannulenes of C70. Journal of the American Chemical Society, 2002, 124, 6317-6323.	13.7	66
92	THE ELUSIVE C60S: THREE ATTEMPTED SYNTHESES. Fullerenes Nanotubes and Carbon Nanostructures, 2002, 10, 37-47.	2.1	7
93	Self-assembled nanoscale photomimetic models: structure and related dynamics. Chemical Physics, 2002, 275, 185-209.	1.9	27
94	Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes. Science, 2002, 297, 593-596.	12.6	3,582
95	Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. Science, 2002, 298, 2361-2366.	12.6	2,826
96	Synthesis and Characterization of the "Missing―Oxide of C60: [5,6]-Open C60O. Journal of the American Chemical Society, 2001, 123, 9720-9721.	13.7	91
97	Triplet State Dissociation of C120, the Dimer of C60. Journal of Physical Chemistry A, 2001, 105, 9845-9850.	2.5	18
98	Competition between electron transfer and energy migration in self-assembled porphyrin triads. Materials Science and Engineering C, 2001, 18, 99-111.	7.3	9
99	Manifestation of nonplanarity effects and charge-transfer interactions in spectral and kinetic properties of triplet states of sterically strained octaethylporphyrins. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2001, 90, 67-77.	0.6	19
100	Steric Interactions Influence on Electron Transfer Efficiency in Meso-Nitrophenylporphyrins and their Chemical Dimers. Molecular Crystals and Liquid Crystals, 2001, 361, 77-82.	0.3	1
101	Photoinduced electron transfer in meso-nitrophenyl-substituted porphyrins and their chemical dimers. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2000, 88, 205-216.	0.6	10
102	Title is missing!. Journal of Fluorescence, 2000, 10, 55-68.	2.5	17
103	C60O3, a Fullerene Ozonide:Â Synthesis and Dissociation to C60O and O2. Journal of the American Chemical Society, 2000, 122, 11473-11479.	13.7	107
104	Determination of Triplet Quantum Yields from Tripletâ^'Triplet Annihilation Fluorescence. Journal of Physical Chemistry A, 2000, 104, 7711-7714.	2.5	83
105	Time-Resolved Thermally Activated Delayed Fluorescence in C70and 1,2-C70H2. Journal of Physical Chemistry A, 2000, 104, 11265-11269.	2.5	34
106	Efficient low temperature charge transfer in a self-assembled porphyrin aggregate. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 126, 99-109.	3.9	24
107	Pathways for photoinduced electron transfer in meso-nitro-phenyl-octaethylporphyrins and their chemical dimers. Chemical Physics Letters, 1999, 304, 155-166.	2.6	22
108	Photophysical Studies of 1,2-C70H2. Journal of Physical Chemistry A, 1999, 103, 10842-10845.	2.5	7

#	Article	lF	CITATIONS
109	Fluorescence of Retinal Schiff Base in Alcohols. Journal of Physical Chemistry A, 1999, 103, 2481-2488.	2.5	13
110	Excited state energies and internal conversion in diphenylpolyenes: from diphenylbutadiene to diphenyltetradecaheptaene. Chemical Physics Letters, 1998, 283, 235-242.	2.6	51
111	Unusual dynamic relaxation of triplet-excited meso-phenyl-substituted porphyrins and their chemical dimers at room temperatures. Chemical Physics Letters, 1998, 297, 97-108.	2.6	50
112	Spectral shape of diphenylpolyene fluorescence and mixing of the S1 and S2 states. Chemical Physics, 1998, 229, 75-91.	1.9	21
113	Electron Transfer in Porphyrin Multimolecular Self-Organized Nanostructures. Molecular Crystals and Liquid Crystals, 1998, 324, 169-176.	0.3	5
114	Fluorescence properties of protonated and unprotonated Schiff bases of retinal at room temperature. Journal of Photochemistry and Photobiology B: Biology, 1996, 34, 39-46.	3.8	18
115	\hat{l}^2 -carotene triplet state absorption in the near-IR range. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 91, 111-115.	3.9	31
116	<title>Beta-carotene S<formula><inf><roman>1</roman></inf></formula> fluorescence</title> ., 1995, 2370, 719.		1
117	Solvent and Temperature Effects on Dual Fluorescence in a Series of Carotenes. Energy Gap Dependence of the Internal Conversion Rate. The Journal of Physical Chemistry, 1995, 99, 16199-16209.	2.9	130
118	Diphenyloctatetraene S2 emission. Chemical Physics Letters, 1994, 218, 557-562.	2.6	12
119	Time-resolved laser study of the transient absorption and conductivity on iodine-doped \hat{I}^2 -carotene films. , 1993, , .		1
120	Picosecond kinetics and S n \leftarrow S 1 absorption spectra of retinoids and carotenoids. , 1991, , .		2
121	Solvent effect on radiative and non-radiative transitions in all-trans-1,6-diphenylhexatriene. Journal of Photochemistry and Photobiology A: Chemistry, 1991, 59, 273-283.	3.9	21
122	S2 → S0 fluorescence and transient Sn ↕S1 absorption of all-rans-β-carotene in solid and liquid solutions. Journal of Photochemistry and Photobiology A: Chemistry, 1989, 46, 315-322.	3.9	68