Gongming Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11297575/gongming-wang-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

64 116 21,004 112 h-index g-index citations papers 116 6.91 23,211 13.5 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
112	Reversing the Nucleophilicity of Active Sites in CoP Enables Exceptional Hydrogen Evolution Catalysis <i>Small</i> , 2022 , e2106870	11	5
111	Interfacial synergies between single-atomic Pt and CoS for enhancing hydrogen evolution reaction catalysis. <i>Applied Catalysis B: Environmental</i> , 2022 , 315, 121534	21.8	4
110	Applications of MoS2 in LiD2 Batteries: Development and Challenges. <i>Energy & amp; Fuels</i> , 2021 , 35, 5613-5626	4.1	8
109	Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. <i>Nature Communications</i> , 2021 , 12, 3102	17.4	24
108	Dual-Metal Sites Boosting Polarization of Nitrogen Molecules for Efficient Nitrogen Photofixation. <i>Advanced Science</i> , 2021 , 8, 2100302	13.6	11
107	Accelerating water dissociation kinetics of Ni3N by tuning interfacial orbital coupling. <i>Nano Research</i> , 2021 , 14, 3458-3465	10	6
106	Oxygen vacancies enable the visible light photoactivity of chromium-implanted TiO2 nanowires. <i>Journal of Energy Chemistry</i> , 2021 , 55, 154-161	12	13
105	Two-dimensional MOS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. <i>Nano Research</i> , 2021 , 14, 1985-2002	10	32
104	Ternary cobaltiron sulfide as a robust electrocatalyst for water oxidation: A dual effect from surface evolution and metal doping. <i>Applied Surface Science</i> , 2021 , 542, 148681	6.7	9
103	Nitrogen doped FeS2 nanoparticles for efficient and stable hydrogen evolution reaction. <i>Journal of Energy Chemistry</i> , 2021 , 56, 283-289	12	12
102	Regulating the adsorption behavior of intermediates on IrW@IrWO3½ boosts acidic water oxidation electrocatalysis. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 6092-6100	7.8	6
101	Two-Dimensional Transition Metal Chalcogenides for Hydrogen Evolution Catalysis 2021 , 3075-3101		
100	Regulating the electron filling state of d orbitals in Ta-based compounds for tunable lithium-sulfur chemistry. <i>Sustainable Materials and Technologies</i> , 2021 , 28, e00271	5.3	3
99	Superior surface electron energy level endows WP2 nanowire arrays with N2 fixation functions. Journal of Energy Chemistry, 2021 , 59, 55-62	12	1
98	Electronic surface reconstruction of TiO2 nanocrystals revealed by resonant inelastic x-ray scattering. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2021 , 39, 063204	2.9	
97	Two-Dimensional Transition Metal Chalcogenides for Hydrogen Evolution Catalysis 2020 , 1-28		
96	Two-Dimensional MoS for Li-S Batteries: Structural Design and Electronic Modulation. <i>ChemSusChem</i> , 2020 , 13, 1392-1408	8.3	13

(2018-2020)

95	High-Spin Sulfur-Mediated Phosphorous Activation Enables Safe and Fast Phosphorus Anodes for Sodium-Ion Batteries. <i>CheM</i> , 2020 , 6, 221-233	16.2	23
94	N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. <i>Science Advances</i> , 2020 , 6, eaaw8113	14.3	116
93	Orbital-regulated interfacial electronic coupling endows Ni3N with superior catalytic surface for hydrogen evolution reaction. <i>Science China Chemistry</i> , 2020 , 63, 1563-1569	7.9	10
92	Phosphorene: a Potential 2D Material for Highly Efficient Polysulfide Trapping and Conversion. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 631-639	2.2	5
91	Hexagonal Boron Nitride as a Multifunctional Support for Engineering Efficient Electrocatalysts toward the Oxygen Reduction Reaction. <i>Nano Letters</i> , 2020 , 20, 6807-6814	11.5	50
90	Regulating the Interfacial Electronic Coupling of Fe N via Orbital Steering for Hydrogen Evolution Catalysis. <i>Advanced Materials</i> , 2020 , 32, e1904346	24	48
89	Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. <i>Nature Communications</i> , 2019 , 10, 1217	17.4	218
88	Manipulating the water dissociation kinetics of Ni3N nanosheets via in situ interfacial engineering. Journal of Materials Chemistry A, 2019 , 7, 10924-10929	13	60
87	Boosting Water Dissociation Kinetics on Pt-Ni Nanowires by N-Induced Orbital Tuning. <i>Advanced Materials</i> , 2019 , 31, e1807780	24	113
86	Fully integrated hierarchical double-shelled CoS@CNT nanostructures with unprecedented performance for Li-S batteries. <i>Nanoscale Horizons</i> , 2019 , 4, 182-189	10.8	46
85	Tailoring the d-Band Centers Enables Co N Nanosheets To Be Highly Active for Hydrogen Evolution Catalysis. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5076-5080	16.4	449
84	Tailoring the d-Band Centers Enables Co4N Nanosheets To Be Highly Active for Hydrogen Evolution Catalysis. <i>Angewandte Chemie</i> , 2018 , 130, 5170-5174	3.6	102
83	The Midas Touch Transformation of TiO2 Nanowire Arrays during Visible Light Photoelectrochemical Performance by Carbon/Nitrogen Coimplantation. <i>Advanced Energy Materials</i> , 2018 , 8, 1800165	21.8	60
82	Self-Standing Hierarchical P/CNTs@rGO with Unprecedented Capacity and Stability for Lithium and Sodium Storage. <i>CheM</i> , 2018 , 4, 372-385	16.2	103
81	Manipulating the Redox Kinetics of LiB Chemistry by Tellurium Doping for Improved LiB Batteries. <i>ACS Energy Letters</i> , 2018 , 3, 420-427	20.1	94
80	Achieving Insertion-Like Capacity at Ultrahigh Rate via Tunable Surface Pseudocapacitance. <i>Advanced Materials</i> , 2018 , 30, e1706640	24	154
79	Electron density modulation of NiCoS nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. <i>Nature Communications</i> , 2018 , 9, 1425	17.4	266
78	SURFACE ENGINEERING OF SEMICONDUCTORS FOR PHOTOELECTROCHEMICAL WATER SPLITTING 2018 , 223-249		

77	Deciphering the Modulation Essence of p Bands in Co-Based Compounds on Li-S Chemistry. <i>Joule</i> , 2018 , 2, 2681-2693	27.8	241
76	Molecular ligand modulation of palladium nanocatalysts for highly efficient and robust heterogeneous oxidation of cyclohexenone to phenol. <i>Science Advances</i> , 2017 , 3, e1600615	14.3	18
75	Wet-Chemical Synthesis of Hollow Red-Phosphorus Nanospheres with Porous Shells as Anodes for High-Performance Lithium-Ion and Sodium-Ion Batteries. <i>Advanced Materials</i> , 2017 , 29, 1700214	24	175
74	Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting. <i>Advanced Energy Materials</i> , 2017 , 7, 1700555	21.8	291
73	Oxygen defective metal oxides for energy conversion and storage. <i>Nano Today</i> , 2017 , 13, 23-39	17.9	204
7²	Gate-Induced Insulator to Band-Like Transport Transition in Organolead Halide Perovskite. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 429-434	6.4	20
71	Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates. <i>Joule</i> , 2017 , 1, 548-562	27.8	142
70	Highly Sensitive Chemical Detection with Tunable Sensitivity and Selectivity from Ultrathin Platinum Nanowires. <i>Small</i> , 2017 , 13, 1602969	11	14
69	The Effect of Thermal Annealing on Charge Transport in Organolead Halide Perovskite Microplate Field-Effect Transistors. <i>Advanced Materials</i> , 2017 , 29, 1601959	24	81
68	Phase and Interface Engineering of Platinum-Nickel Nanowires for Efficient Electrochemical Hydrogen Evolution. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12859-63	16.4	247
67	Nanoelectronic Investigation Reveals the Electrochemical Basis of Electrical Conductivity in Shewanella and Geobacter. <i>ACS Nano</i> , 2016 , 10, 9919-9926	16.7	34
66	Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. <i>Nature Communications</i> , 2016 , 7, 11330	17.4	173
65	Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites. ACS Nano, 2016, 10, 6933-41	16.7	91
64	An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2849-2855	13	88
63	Three-dimensional graphene framework with ultra-high sulfur content for a robust lithiumBulfur battery. <i>Nano Research</i> , 2016 , 9, 240-248	10	147
62	van der Waals Heterojunction Devices Based on Organohalide Perovskites and Two-Dimensional Materials. <i>Nano Letters</i> , 2016 , 16, 367-73	11.5	163
61	Omnidirectional enhancement of photocatalytic hydrogen evolution over hierarchical Bauline leaf nanoarchitectures. <i>Applied Catalysis B: Environmental</i> , 2016 , 186, 88-96	21.8	104
60	Acid Treatment Enables Suppression of Electron-Hole Recombination in Hematite for Photoelectrochemical Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3403-7	16.4	107

(2014-2016)

59	Acid Treatment Enables Suppression of ElectronHole Recombination in Hematite for Photoelectrochemical Water Splitting. <i>Angewandte Chemie</i> , 2016 , 128, 3464-3468	3.6	24
58	Reduced graphene oxide/silicon nanowire heterostructures with enhanced photoactivity and superior photoelectrochemical stability. <i>Nano Research</i> , 2015 , 8, 2850-2858	10	29
57	An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg. <i>Nano Letters</i> , 2015 , 15, 3189-94	11.5	100
56	Photohole Induced Corrosion of Titanium Dioxide: Mechanism and Solutions. <i>Nano Letters</i> , 2015 , 15, 7051-7	11.5	46
55	Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. <i>Science Advances</i> , 2015 , 1, e1500613	14.3	226
54	An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. <i>Nature Communications</i> , 2015 , 6, 7867	17.4	44
53	Significantly Enhanced Visible Light Photoelectrochemical Activity in TiOINanowire Arrays by Nitrogen Implantation. <i>Nano Letters</i> , 2015 , 15, 4692-8	11.5	138
52	Synthesis of Stable Shape-Controlled Catalytically Active Palladium Hydride. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15672-5	16.4	75
51	Flexible solid-state supercapacitors: design, fabrication and applications. <i>Energy and Environmental Science</i> , 2014 , 7, 2160	35.4	985
50	Chemically modified nanostructures for photoelectrochemical water splitting. <i>Journal of Photochemistry and Photobiology C: Photochemistry Reviews</i> , 2014 , 19, 35-51	16.4	130
49	The Effect of the Hydrogenation Temperature on TiO2 Nanostructures for Photoelectrochemical Water Oxidation. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 760-766	2.3	20
48	A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O(13-x). <i>Advanced Materials</i> , 2014 , 26, 5869-75	24	276
47	Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation. <i>ChemSusChem</i> , 2014 , 7, 848-53	8.3	61
46	Photoenhanced electrochemical interaction between Shewanella and a hematite nanowire photoanode. <i>Nano Letters</i> , 2014 , 14, 3688-93	11.5	94
45	Obviously Angular, Cuboid-Shaped TiO2 Nanowire Arrays Decorated with Ag Nanoparticle as Ultrasensitive 3D Surface-Enhanced Raman Scattering Substrates. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 22711-22718	3.8	28
44	Low-Cost Nanomaterials for Photoelectrochemical Water Splitting. <i>Green Energy and Technology</i> , 2014 , 267-295	0.6	4
43	Light-directed electrophoretic deposition: a new additive manufacturing technique for arbitrarily patterned 3D composites. <i>Advanced Materials</i> , 2014 , 26, 2252-6	24	44
42	Improving the Cycling Stability of Metal N itride Supercapacitor Electrodes with a Thin Carbon Shell. <i>Advanced Energy Materials</i> , 2014 , 4, 1300994	21.8	188

41	Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. <i>Advanced Materials</i> , 2014 , 26, 2676-82, 2615	24	555
40	High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. <i>Nanoscale</i> , 2013 , 5, 7984-90	7.7	223
39	Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. <i>Nano Letters</i> , 2013 , 13, 3817-23	11.5	725
38	Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates. <i>Nanoscale</i> , 2013 , 5, 1820-4	7.7	21
37	Chemically modified titanium oxide nanostructures for dye-sensitized solar cells. <i>Nano Energy</i> , 2013 , 2, 1373-1382	17.1	19
36	A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. <i>Nanoscale</i> , 2013 , 5, 4129-33	7.7	145
35	Self-biased solar-microbial device for sustainable hydrogen generation. ACS Nano, 2013, 7, 8728-35	16.7	74
34	High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. <i>Nano Letters</i> , 2013 , 13, 2628-33	11.5	622
33	Computational and Photoelectrochemical Study of Hydrogenated Bismuth Vanadate. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 10957-10964	3.8	185
32	Nickel Catalyst Boosts Solar Hydrogen Generation of CdSe Nanocrystals. <i>ChemCatChem</i> , 2013 , 5, 1294-	1325	9
31	H-TiO(2) @MnO(2) //H-TiO(2) @C core-shell nanowires for high performance and flexible asymmetric supercapacitors. <i>Advanced Materials</i> , 2013 , 25, 267-72	24	828
30	Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO Nanowires for Photoelectrochemical Water Splitting. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 25837-	2 ³ 5844	181
29	Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors. <i>Nanoscale</i> , 2012 , 4, 3123-7	7.7	213
28	LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. <i>ACS Nano</i> , 2012 , 6, 10296-302	16.7	271
27	Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. <i>Nano Letters</i> , 2012 , 12, 5376-81	11.5	563
26	Hydrogenated TiO2 nanotube arrays for supercapacitors. <i>Nano Letters</i> , 2012 , 12, 1690-6	11.5	1113
25	Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. <i>Nanoscale</i> , 2012 , 4, 1463-6	7.7	101
24	Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. <i>Nanoscale</i> , 2012 , 4, 6682-91	7.7	306

(2010-2012)

Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. <i>Chemical Communications</i> , 2012 , 48, 7717-9	5.8	221
Hydrogen-treated WO3 nanoflakes show enhanced photostability. <i>Energy and Environmental Science</i> , 2012 , 5, 6180	35.4	559
Solar driven hydrogen releasing from urea and human urine. <i>Energy and Environmental Science</i> , 2012 , 5, 8215	35.4	112
Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. <i>Energy and Environmental Science</i> , 2012 , 5, 6682	35.4	434
The Influence of Oxygen Content on the Thermal Activation of Hematite Nanowires. <i>Angewandte Chemie</i> , 2012 , 124, 4150-4155	3.6	87
The influence of oxygen content on the thermal activation of hematite nanowires. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4074-9	16.4	274
Ultrafast Charge Carrier Dynamics and Photoelectrochemical Properties of Hydrogen-treated TiO2 Nanowire Arrays. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1387, 1		4
Deciphering the electron transport pathway for graphene oxide reduction by Shewanella oneidensis MR-1. <i>Journal of Bacteriology</i> , 2011 , 193, 3662-5	3.5	65
Sn-doped hematite nanostructures for photoelectrochemical water splitting. <i>Nano Letters</i> , 2011 , 11, 2119-25	11.5	882
Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. <i>Nano Letters</i> , 2011 , 11, 3026-33	11.5	2101
Facile synthesis of highly photoactive ⊞eD⊕ased films for water oxidation. <i>Nano Letters</i> , 2011 , 11, 3503-9	11.5	556
Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes. <i>Journal of Power Sources</i> , 2011 , 196, 5209-5214	8.9	94
CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. <i>Nano Research</i> , 2011 , 4, 249-258	10	78
Microbial reduction of graphene oxide by Shewanella. <i>Nano Research</i> , 2011 , 4, 563-570	10	274
Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. <i>Nano Letters</i> , 2010 , 10, 4686-91	11.5	180
Ultrasmall Single-Crystal Indium Antimonide Nanowires. <i>Crystal Growth and Design</i> , 2010 , 10, 2479-248	2 3.5	43
Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO(2) nanostructures for photoelectrochemical solar hydrogen generation. <i>Nano Letters</i> , 2010 , 10, 478-83	11.5	435
	Solar driven hydrogen releasing from urea and human urine. Energy and Environmental Science, 2012, 5, 8215 Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy and Environmental Science, 2012, 5, 6682 The Influence of Oxygen Content on the Thermal Activation of Hematite Nanowires. Angewandte Chemie, 2012, 124, 4150-4155 The influence of oxygen content on the thermal activation of hematite nanowires. Angewandte Chemie, 2012, 124, 4150-4155 The influence of oxygen content on the thermal activation of hematite nanowires. Angewandte Chemie - International Edition, 2012, 51, 4074-9 Ultrafast Charge Carrier Dynamics and Photoelectrochemical Properties of Hydrogen-treated TiO2 Nanowire Arrays. Materials Research Society Symposia Proceedings, 2012, 1387, 1 Deciphering the electron transport pathway for graphene oxide reduction by Shewanella oneidensis MR-1. Journal of Bacteriology, 2011, 193, 3662-5 Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Letters, 2011, 11, 2119-25 Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Letters, 2011, 11, 303-3 Facile synthesis of highly photoactive Fe®based films for water oxidation. Nano Letters, 2011, 11, 3503-9 Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes. Journal of Power Sources, 2011, 196, 5209-5214 CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Research, 2011, 4, 249-258 Microbial reduction of graphene oxide by Shewanella. Nano Research, 2011, 4, 563-570 Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. Nano Letters, 2010, 10, 4686-91 Ultrasmall Single-Crystal Indium Antimonide Nanowires. Crystal Growth and Design, 2010, 10, 2479-248 Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO(2) nanostructures	Solar driven hydrogen releasing from urea and human urine. Energy and Environmental Science, 2012, 5, 8215 Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy and Environmental Science, 2012, 5, 6682 354 The Influence of Oxygen Content on the Thermal Activation of Hematite Nanowires. Angewandte Chemie, 2012, 124, 4150-4155 The influence of oxygen content on the thermal activation of hematite nanowires. Angewandte Chemie. International Edition, 2012, 51, 4074-9 Ultrafast Charge Carrier Dynamics and Photoelectrochemical Properties of Hydrogen-treated TiO2 Nanowire Arrays. Materials Research Society Symposia Proceedings, 2012, 1387, 1 Deciphering the electron transport pathway for graphene oxide reduction by Shewanella oneidensis MR-1. Journal of Bacteriology, 2011, 193, 3662-5 Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Letters, 2011, 11, 2119-25 Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Letters, 2011, 11, 3026-33 Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes. Journal of Power Sources, 2011, 196, 5209-5214 CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Research, 2011, 4, 249-258 Microbial reduction of graphene oxide by Shewanella. Nano Research, 2011, 4, 563-570 10 Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. Nano Letters, 2010, 10, 4686-91 Ultrasmall Single-Crystal Indium Antimonide Nanowires. Crystal Growth and Design, 2010, 10, 2479-24823-5 Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO(2) nanostructures

5	Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. <i>Nano Letters</i> , 2009 , 9, 2331-6	11.5	967
4	Tuning the Interaction between Ruthenium Single Atoms and the Second Coordination Sphere for Efficient Nitrogen Photofixation. <i>Advanced Functional Materials</i> ,2112452	15.6	3
3	Hierarchical Ion/Electron Networks Enable Efficient Red Phosphorus Anode with High Mass Loading for Sodium Ion Batteries. <i>Advanced Functional Materials</i> ,2110444	15.6	4
2	Phosphorus incorporation activates the basal plane of tungsten disulfide for efficient hydrogen evolution catalysis. <i>Nano Research</i> ,1	10	4
1	Constructing Reactive Micro-Environment in Basal Plane of MoS 2 for pH-Universal Hydrogen Evolution Catalysis. <i>Small</i> ,2107974	11	2