Gongming Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/11297575/gongming-wang-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

116 64 21,004 112 h-index g-index citations papers 116 6.91 23,211 13.5 ext. citations avg, IF L-index ext. papers

#	Paper	IF	Citations
112	Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. <i>Nano Letters</i> , 2011 , 11, 3026-33	11.5	2101
111	Hydrogenated TiO2 nanotube arrays for supercapacitors. <i>Nano Letters</i> , 2012 , 12, 1690-6	11.5	1113
110	Flexible solid-state supercapacitors: design, fabrication and applications. <i>Energy and Environmental Science</i> , 2014 , 7, 2160	35.4	985
109	Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. <i>Nano Letters</i> , 2009 , 9, 2331-6	11.5	967
108	Sn-doped hematite nanostructures for photoelectrochemical water splitting. <i>Nano Letters</i> , 2011 , 11, 2119-25	11.5	882
107	H-TiO(2) @MnO(2) //H-TiO(2) @C core-shell nanowires for high performance and flexible asymmetric supercapacitors. <i>Advanced Materials</i> , 2013 , 25, 267-72	24	828
106	Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. <i>Nano Letters</i> , 2013 , 13, 3817-23	11.5	725
105	High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. <i>Nano Letters</i> , 2013 , 13, 2628-33	11.5	622
104	Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. <i>Nano Letters</i> , 2012 , 12, 5376-81	11.5	563
103	Hydrogen-treated WO3 nanoflakes show enhanced photostability. <i>Energy and Environmental Science</i> , 2012 , 5, 6180	35.4	559
102	Facile synthesis of highly photoactive FeØDased films for water oxidation. <i>Nano Letters</i> , 2011 , 11, 3503-9	11.5	556
101	Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. <i>Advanced Materials</i> , 2014 , 26, 2676-82, 2615	24	555
100	Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. <i>Nano Letters</i> , 2010 , 10, 1088-92	11.5	549
99	Tailoring the d-Band Centers Enables Co N Nanosheets To Be Highly Active for Hydrogen Evolution Catalysis. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5076-5080	16.4	449
98	Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO(2) nanostructures for photoelectrochemical solar hydrogen generation. <i>Nano Letters</i> , 2010 , 10, 478-83	11.5	435
97	Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. <i>Energy and Environmental Science</i> , 2012 , 5, 6682	35.4	434
96	Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. <i>Nanoscale</i> , 2012 , 4, 6682-91	7.7	306

(2010-2017)

95	Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting. <i>Advanced Energy Materials</i> , 2017 , 7, 1700555	21.8	291
94	A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O(13-x). <i>Advanced Materials</i> , 2014 , 26, 5869-75	24	276
93	The influence of oxygen content on the thermal activation of hematite nanowires. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4074-9	16.4	274
92	Microbial reduction of graphene oxide by Shewanella. <i>Nano Research</i> , 2011 , 4, 563-570	10	274
91	LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. <i>ACS Nano</i> , 2012 , 6, 10296-302	16.7	271
90	Electron density modulation of NiCoS nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. <i>Nature Communications</i> , 2018 , 9, 1425	17.4	266
89	Phase and Interface Engineering of Platinum-Nickel Nanowires for Efficient Electrochemical Hydrogen Evolution. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12859-63	16.4	247
88	Deciphering the Modulation Essence of p Bands in Co-Based Compounds on Li-S Chemistry. <i>Joule</i> , 2018 , 2, 2681-2693	27.8	241
87	Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. <i>Science Advances</i> , 2015 , 1, e1500613	14.3	226
86	High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. <i>Nanoscale</i> , 2013 , 5, 7984-90	7.7	223
85	Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. <i>Chemical Communications</i> , 2012 , 48, 7717-9	5.8	221
84	Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. <i>Nature Communications</i> , 2019 , 10, 1217	17.4	218
83	Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors. <i>Nanoscale</i> , 2012 , 4, 3123-7	7.7	213
82	Oxygen defective metal oxides for energy conversion and storage. <i>Nano Today</i> , 2017 , 13, 23-39	17.9	204
81	Improving the Cycling Stability of Metal Mitride Supercapacitor Electrodes with a Thin Carbon Shell. <i>Advanced Energy Materials</i> , 2014 , 4, 1300994	21.8	188
80	Computational and Photoelectrochemical Study of Hydrogenated Bismuth Vanadate. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 10957-10964	3.8	185
79	Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO Nanowires for Photoelectrochemical Water Splitting. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 25837-	2 3 844	181
78	Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. <i>Nano Letters</i> , 2010 , 10, 4686-91	11.5	180

77	Wet-Chemical Synthesis of Hollow Red-Phosphorus Nanospheres with Porous Shells as Anodes for High-Performance Lithium-Ion and Sodium-Ion Batteries. <i>Advanced Materials</i> , 2017 , 29, 1700214	24	175
76	Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. <i>Nature Communications</i> , 2016 , 7, 11330	17.4	173
75	van der Waals Heterojunction Devices Based on Organohalide Perovskites and Two-Dimensional Materials. <i>Nano Letters</i> , 2016 , 16, 367-73	11.5	163
74	Achieving Insertion-Like Capacity at Ultrahigh Rate via Tunable Surface Pseudocapacitance. <i>Advanced Materials</i> , 2018 , 30, e1706640	24	154
73	Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium ulfur battery. <i>Nano Research</i> , 2016 , 9, 240-248	10	147
72	A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. <i>Nanoscale</i> , 2013 , 5, 4129-33	7.7	145
71	Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates. <i>Joule</i> , 2017 , 1, 548-562	27.8	142
70	Significantly Enhanced Visible Light Photoelectrochemical Activity in TiOINanowire Arrays by Nitrogen Implantation. <i>Nano Letters</i> , 2015 , 15, 4692-8	11.5	138
69	Chemically modified nanostructures for photoelectrochemical water splitting. <i>Journal of Photochemistry and Photobiology C: Photochemistry Reviews</i> , 2014 , 19, 35-51	16.4	130
68	N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. <i>Science Advances</i> , 2020 , 6, eaaw8113	14.3	116
67	Boosting Water Dissociation Kinetics on Pt-Ni Nanowires by N-Induced Orbital Tuning. <i>Advanced Materials</i> , 2019 , 31, e1807780	24	113
66	Solar driven hydrogen releasing from urea and human urine. <i>Energy and Environmental Science</i> , 2012 , 5, 8215	35.4	112
65	Acid Treatment Enables Suppression of Electron-Hole Recombination in Hematite for Photoelectrochemical Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3403-7	16.4	107
64	Omnidirectional enhancement of photocatalytic hydrogen evolution over hierarchical Bauline leaf nanoarchitectures. <i>Applied Catalysis B: Environmental</i> , 2016 , 186, 88-96	21.8	104
63	Self-Standing Hierarchical P/CNTs@rGO with Unprecedented Capacity and Stability for Lithium and Sodium Storage. <i>CheM</i> , 2018 , 4, 372-385	16.2	103
62	Tailoring the d-Band Centers Enables Co4N Nanosheets To Be Highly Active for Hydrogen Evolution Catalysis. <i>Angewandte Chemie</i> , 2018 , 130, 5170-5174	3.6	102
61	Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. <i>Nanoscale</i> , 2012 , 4, 1463-6	7.7	101
60	An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg. <i>Nano Letters</i> , 2015 , 15, 3189-94	11.5	100

59	Manipulating the Redox Kinetics of Liß Chemistry by Tellurium Doping for Improved Liß Batteries. <i>ACS Energy Letters</i> , 2018 , 3, 420-427	20.1	94
58	Photoenhanced electrochemical interaction between Shewanella and a hematite nanowire photoanode. <i>Nano Letters</i> , 2014 , 14, 3688-93	11.5	94
57	Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes. <i>Journal of Power Sources</i> , 2011 , 196, 5209-5214	8.9	94
56	Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites. ACS Nano, 2016, 10, 6933-41	16.7	91
55	An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2849-2855	13	88
54	The Influence of Oxygen Content on the Thermal Activation of Hematite Nanowires. <i>Angewandte Chemie</i> , 2012 , 124, 4150-4155	3.6	87
53	The Effect of Thermal Annealing on Charge Transport in Organolead Halide Perovskite Microplate Field-Effect Transistors. <i>Advanced Materials</i> , 2017 , 29, 1601959	24	81
52	CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. <i>Nano Research</i> , 2011 , 4, 249-258	10	78
51	Synthesis of Stable Shape-Controlled Catalytically Active Palladium Hydride. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15672-5	16.4	75
50	Self-biased solar-microbial device for sustainable hydrogen generation. <i>ACS Nano</i> , 2013 , 7, 8728-35	16.7	74
49	Deciphering the electron transport pathway for graphene oxide reduction by Shewanella oneidensis MR-1. <i>Journal of Bacteriology</i> , 2011 , 193, 3662-5	3.5	65
48	Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation. <i>ChemSusChem</i> , 2014 , 7, 848-53	8.3	61
47	Manipulating the water dissociation kinetics of Ni3N nanosheets via in situ interfacial engineering. Journal of Materials Chemistry A, 2019 , 7, 10924-10929	13	60
46	The Midas Touchl Transformation of TiO2 Nanowire Arrays during Visible Light Photoelectrochemical Performance by Carbon/Nitrogen Coimplantation. <i>Advanced Energy Materials</i> , 2018 , 8, 1800165	21.8	60
45	Hexagonal Boron Nitride as a Multifunctional Support for Engineering Efficient Electrocatalysts toward the Oxygen Reduction Reaction. <i>Nano Letters</i> , 2020 , 20, 6807-6814	11.5	50
44	Regulating the Interfacial Electronic Coupling of Fe N via Orbital Steering for Hydrogen Evolution Catalysis. <i>Advanced Materials</i> , 2020 , 32, e1904346	24	48
43	Photohole Induced Corrosion of Titanium Dioxide: Mechanism and Solutions. <i>Nano Letters</i> , 2015 , 15, 7051-7	11.5	46
42	Fully integrated hierarchical double-shelled CoS@CNT nanostructures with unprecedented performance for Li-S batteries. <i>Nanoscale Horizons</i> , 2019 , 4, 182-189	10.8	46

41	An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. <i>Nature Communications</i> , 2015 , 6, 7867	17.4	44
40	Light-directed electrophoretic deposition: a new additive manufacturing technique for arbitrarily patterned 3D composites. <i>Advanced Materials</i> , 2014 , 26, 2252-6	24	44
39	Ultrasmall Single-Crystal Indium Antimonide Nanowires. Crystal Growth and Design, 2010, 10, 2479-248	23.5	43
38	Nanoelectronic Investigation Reveals the Electrochemical Basis of Electrical Conductivity in Shewanella and Geobacter. <i>ACS Nano</i> , 2016 , 10, 9919-9926	16.7	34
37	Two-dimensional MOS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. <i>Nano Research</i> , 2021 , 14, 1985-2002	10	32
36	Reduced graphene oxide/silicon nanowire heterostructures with enhanced photoactivity and superior photoelectrochemical stability. <i>Nano Research</i> , 2015 , 8, 2850-2858	10	29
35	Obviously Angular, Cuboid-Shaped TiO2 Nanowire Arrays Decorated with Ag Nanoparticle as Ultrasensitive 3D Surface-Enhanced Raman Scattering Substrates. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 22711-22718	3.8	28
34	Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. <i>Nature Communications</i> , 2021 , 12, 3102	17.4	24
33	Acid Treatment Enables Suppression of Electron Hole Recombination in Hematite for Photoelectrochemical Water Splitting. <i>Angewandte Chemie</i> , 2016 , 128, 3464-3468	3.6	24
32	High-Spin Sulfur-Mediated Phosphorous Activation Enables Safe and Fast Phosphorus Anodes for Sodium-Ion Batteries. <i>CheM</i> , 2020 , 6, 221-233	16.2	23
31	Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates. <i>Nanoscale</i> , 2013 , 5, 1820-4	7.7	21
30	Gate-Induced Insulator to Band-Like Transport Transition in Organolead Halide Perovskite. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 429-434	6.4	20
29	The Effect of the Hydrogenation Temperature on TiO2 Nanostructures for Photoelectrochemical Water Oxidation. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 760-766	2.3	20
28	Chemically modified titanium oxide nanostructures for dye-sensitized solar cells. <i>Nano Energy</i> , 2013 , 2, 1373-1382	17.1	19
27	Molecular ligand modulation of palladium nanocatalysts for highly efficient and robust heterogeneous oxidation of cyclohexenone to phenol. <i>Science Advances</i> , 2017 , 3, e1600615	14.3	18
26	Highly Sensitive Chemical Detection with Tunable Sensitivity and Selectivity from Ultrathin Platinum Nanowires. <i>Small</i> , 2017 , 13, 1602969	11	14
25	Two-Dimensional MoS for Li-S Batteries: Structural Design and Electronic Modulation. <i>ChemSusChem</i> , 2020 , 13, 1392-1408	8.3	13
24	Oxygen vacancies enable the visible light photoactivity of chromium-implanted TiO2 nanowires. Journal of Energy Chemistry, 2021 , 55, 154-161	12	13

23	Nitrogen doped FeS2 nanoparticles for efficient and stable hydrogen evolution reaction. <i>Journal of Energy Chemistry</i> , 2021 , 56, 283-289	12	12
22	Dual-Metal Sites Boosting Polarization of Nitrogen Molecules for Efficient Nitrogen Photofixation. <i>Advanced Science</i> , 2021 , 8, 2100302	13.6	11
21	Orbital-regulated interfacial electronic coupling endows Ni3N with superior catalytic surface for hydrogen evolution reaction. <i>Science China Chemistry</i> , 2020 , 63, 1563-1569	7.9	10
20	Nickel Catalyst Boosts Solar Hydrogen Generation of CdSe Nanocrystals. <i>ChemCatChem</i> , 2013 , 5, 1294-	1 <u>39</u> 5	9
19	Ternary cobaltiron sulfide as a robust electrocatalyst for water oxidation: A dual effect from surface evolution and metal doping. <i>Applied Surface Science</i> , 2021 , 542, 148681	6.7	9
18	Applications of MoS2 in Li©2 Batteries: Development and Challenges. <i>Energy & amp; Fuels</i> , 2021 , 35, 5613-5626	4.1	8
17	Accelerating water dissociation kinetics of Ni3N by tuning interfacial orbital coupling. <i>Nano Research</i> , 2021 , 14, 3458-3465	10	6
16	Regulating the adsorption behavior of intermediates on IrM@IrMO3I boosts acidic water oxidation electrocatalysis. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 6092-6100	7.8	6
15	Phosphorene: a Potential 2D Material for Highly Efficient Polysulfide Trapping and Conversion. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 631-639	2.2	5
14	Reversing the Nucleophilicity of Active Sites in CoP Enables Exceptional Hydrogen Evolution Catalysis <i>Small</i> , 2022 , e2106870	11	5
13	Low-Cost Nanomaterials for Photoelectrochemical Water Splitting. <i>Green Energy and Technology</i> , 2014 , 267-295	0.6	4
12	Ultrafast Charge Carrier Dynamics and Photoelectrochemical Properties of Hydrogen-treated TiO2 Nanowire Arrays. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1387, 1		4
11	Hierarchical Ion/Electron Networks Enable Efficient Red Phosphorus Anode with High Mass Loading for Sodium Ion Batteries. <i>Advanced Functional Materials</i> ,2110444	15.6	4
10	Phosphorus incorporation activates the basal plane of tungsten disulfide for efficient hydrogen evolution catalysis. <i>Nano Research</i> ,1	10	4
9	Interfacial synergies between single-atomic Pt and CoS for enhancing hydrogen evolution reaction catalysis. <i>Applied Catalysis B: Environmental</i> , 2022 , 315, 121534	21.8	4
8	Tuning the Interaction between Ruthenium Single Atoms and the Second Coordination Sphere for Efficient Nitrogen Photofixation. <i>Advanced Functional Materials</i> ,2112452	15.6	3
7	Regulating the electron filling state of d orbitals in Ta-based compounds for tunable lithium-sulfur chemistry. <i>Sustainable Materials and Technologies</i> , 2021 , 28, e00271	5.3	3
6	Constructing Reactive Micro-Environment in Basal Plane of MoS 2 for pH-Universal Hydrogen Evolution Catalysis. <i>Small</i> ,2107974	11	2

- Superior surface electron energy level endows WP2 nanowire arrays with N2 fixation functions.

 Journal of Energy Chemistry, **2021**, 59, 55-62
- 12 1
- Two-Dimensional Transition Metal Chalcogenides for Hydrogen Evolution Catalysis **2020**, 1-28
- 3 Two-Dimensional Transition Metal Chalcogenides for Hydrogen Evolution Catalysis **2021**, 3075-3101
- SURFACE ENGINEERING OF SEMICONDUCTORS FOR PHOTOELECTROCHEMICAL WATER SPLITTING **2018**, 223-249
- Electronic surface reconstruction of TiO2 nanocrystals revealed by resonant inelastic x-ray scattering. *Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films*, **2021**, 39, 063204