
Cyrille B K Rathgeber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1129667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cutting tree rings into time slices: how intraâ€annual dynamics of wood formation help decipher the spaceâ€forâ€time conversion. New Phytologist, 2022, 233, 1520-1534.	3.5	13
2	The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 2022, 13, 28.	5.8	66
3	Wood Formation Modeling – A Research Review and Future Perspectives. Frontiers in Plant Science, 2022, 13, 837648.	1.7	13
4	Longer and faster: Intra-annual growth dynamics of Douglas fir outperform Norway spruce and silver fir over wide climatic gradients. Agricultural and Forest Meteorology, 2022, 321, 108970.	1.9	6
5	Anatomical, Developmental and Physiological Bases of Tree-Ring Formation in Relation to Environmental Factors. Tree Physiology, 2022, , 61-99.	0.9	5
6	Turgor – a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytologist, 2021, 229, 213-229.	3.5	94
7	Modelling the spatial crosstalk between two biochemical signals explains wood formation dynamics and tree-ring structure. Journal of Experimental Botany, 2021, 72, 1727-1737.	2.4	13
8	Drought elicits contrasting responses on the autumn dynamics of wood formation in late successional deciduous tree species. Tree Physiology, 2021, 41, 1171-1185.	1.4	5
9	Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20645-20652.	3.3	113
10	Reply to Elmendorf and Ettinger: Photoperiod plays a dominant and irreplaceable role in triggering secondary growth resumption. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32865-32867.	3.3	2
11	Phenology of wood formation in larch (Larix decidua Mill.) trees growing along a 1000-m elevation gradient in the French Southern Alps. Annals of Forest Science, 2019, 76, 1.	0.8	32
12	Quantifying intra-annual dynamics of carbon sequestration in the forming wood: a novel histologic approach. Annals of Forest Science, 2019, 76, 1.	0.8	16
13	On the need to consider wood formation processes in global vegetation models and a suggested approach. Annals of Forest Science, 2019, 76, 1.	0.8	59
14	From xylogenesis to tree rings: wood traits to investigate tree response to environmental changes. IAWA Journal, 2019, 40, 155-182.	2.7	85
15	Wood formation and tree adaptation to climate. Annals of Forest Science, 2019, 76, 1.	0.8	4
16	Couplings in cell differentiation kinetics mitigate air temperature influence on conifer wood anatomy. Plant, Cell and Environment, 2019, 42, 1222-1232.	2.8	80
17	Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers. Global Change Biology, 2019, 25, 1089-1105.	4.2	72

Seasonal time-course of the above ground biomass production efficiency in beech trees (Fagus) Tj ETQq0 0 0 rgBT $O_{0.8}^{O}$ erlock $\frac{1}{3}$ 0 Tf 50 62

Cyrille B K Rathgeber

#	Article	IF	CITATIONS
19	Autecology and growth of Aleppo pine (Pinus halepensis Mill.): A comprehensive study in France. Forest Ecology and Management, 2018, 413, 32-47.	1.4	13
20	Improving identification of coppiced and seeded trees in past woodland management by comparing growth and wood anatomy of living sessile oaks (Quercus petraea). Quaternary International, 2018, 463, 219-231.	0.7	11
21	CAVIAR: an R package for checking, displaying and processing wood-formation-monitoring data. Tree Physiology, 2018, 38, 1246-1260.	1.4	31
22	Modelling wood formation and structure: power and limits of a morphogenetic gradient in controlling xylem cell proliferation and growth. Annals of Forest Science, 2017, 74, 1.	0.8	40
23	Conifer treeâ€ring density interâ€annual variability – anatomical, physiological and environmental determinants. New Phytologist, 2017, 216, 621-625.	3.5	42
24	Ecophysiology and Plasticity of Wood and Phloem Formation. Ecological Studies, 2017, , 13-33.	0.4	23
25	Intra-annual stem growth dynamics of Lebanon Cedar along climatic gradients. Trees - Structure and Function, 2017, 31, 587-606.	0.9	22
26	Identifying the main drivers for the production and maturation of Scots pine tracheids along a temperature gradient. Agricultural and Forest Meteorology, 2017, 232, 210-224.	1.9	13
27	Missing Rings in Pinus halepensis – The Missing Link to Relate the Tree-Ring Record to Extreme Climatic Events. Frontiers in Plant Science, 2016, 7, 727.	1.7	27
28	Biological Basis of Tree-Ring Formation: A Crash Course. Frontiers in Plant Science, 2016, 7, 734.	1.7	175
29	Xylogenesis: Coniferous Trees of Temperate Forests Are Listening to the Climate Tale during the Growing Season But Only Remember the Last Words!. Plant Physiology, 2016, 171, 306-317.	2.3	96
30	Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology, 2016, 22, 3804-3813.	4.2	174
31	Compensatory mechanisms mitigate the effect of warming and drought on wood formation. Plant, Cell and Environment, 2016, 39, 1338-1352.	2.8	88
32	Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Annals of Forest Science, 2016, 73, 5-25.	0.8	187
33	Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 2015, 1, 15160.	4.7	294
34	CLIMATE CHANGE, TREE-RING WIDTH AND WOOD DENSITY OF PINES IN MEDITERRANEAN ENVIRONMENTS. IAWA Journal, 2015, 36, 257-269.	2.7	18
35	How do drought and warming influence survival and wood traits of Picea mariana saplings?. Journal of Experimental Botany, 2015, 66, 377-389.	2.4	52
36	Kinetics of tracheid development explain conifer treeâ€ring structure. New Phytologist, 2014, 203, 1231-1241.	3.5	226

Cyrille B K Rathgeber

#	Article	IF	CITATIONS
37	Thinning has a positive effect on growth dynamics and growth–climate relationships in Aleppo pine (Pinus halepensis) trees of different crown classes. Annals of Forest Science, 2014, 71, 395-404.	0.8	57
38	A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere. Annals of Botany, 2013, 112, 1911-1920.	1.4	119
39	Effects of temperature and water deficit on cambial activity and woody ring features in Picea mariana saplings. Tree Physiology, 2013, 33, 1006-1017.	1.4	70
40	Generalized additive models reveal the intrinsic complexity of wood formation dynamics. Journal of Experimental Botany, 2013, 64, 1983-1994.	2.4	94
41	Plasticity in Dendroclimatic Response across the Distribution Range of Aleppo Pine (Pinus halepensis). PLoS ONE, 2013, 8, e83550.	1.1	100
42	Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. Tree Physiology, 2012, 32, 612-625.	1.4	150
43	Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus) Tj ETQq1 1 0.78 Tree Physiology, 2012, 32, 1033-1045.	34314 rgB 1.4	T /Overlock 291
44	Phenology of wood formation: Data processing, analysis and visualisation using R (package CAVIAR). Dendrochronologia, 2011, 29, 139-149.	1.0	52
45	Monitoring seasonal dynamics of wood formation. Dendrochronologia, 2011, 29, 123-125.	1.0	13
46	Cambial activity related to tree size in a mature silver-fir plantation. Annals of Botany, 2011, 108, 429-438.	1.4	177
47	Sensitivity of French temperate coniferous forests to climate variability and extreme events (<i>Abies) Tj ETQq1 1</i>	0.784314 1.1	rgBT /Overl
48	Évaluation de la productivité du Pin d'Alep en région méditerranéenne française. Revue Forestier Francaise, 2010, , .	e _{0.0}	4
49	Effet de la variabilité climatique et des événements extrêmes sur la croissance d'Abies alba, Picea abies et Pinus sylvestris en climat tempéré français. Revue Forestiere Francaise, 2010, , .	^{\$} 0.0	0
50	Effects of a 20-day-long dry period on cambial and apical meristem growth in Abies balsamea seedlings. Trees - Structure and Function, 2009, 23, 85-93.	0.9	88
51	Comparing needle and shoot phenology with xylem development on three conifer species in Italy. Annals of Forest Science, 2009, 66, 206-206.	0.8	78
52	Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 2008, 17, 696-707.	2.7	476
53	Linking intra-tree-ring wood density variations and tracheid anatomical characteristics in Douglas fir (Pseudotsuga menziesii(Mirb.) Franco). Annals of Forest Science, 2006, 63, 699-706.	0.8	51
54	Bioclimatic model of tree radial growth: application to the French Mediterranean Aleppo pine forests. Trees - Structure and Function, 2005, 19, 162-176.	0.9	36

#	Article	IF	CITATIONS
55	Last-millennium summer-temperature variations in western Europe based on proxy data. Holocene, 2005, 15, 489-500.	0.9	109
56	Dendroecological analysis of climatic effects on Quercus petraea and Pinus halepensis radial growth using the process-based MAIDEN model. Canadian Journal of Forest Research, 2004, 34, 888-898.	0.8	52
57	Using a biogeochemistry model in simulating forests productivity responses to climatic change and [CO2] increase: example of Pinus halepensis in Provence (south-east France). Ecological Modelling, 2003, 166, 239-255.	1.2	40
58	Spatio-temporal growth dynamics of a subAlpine Pinus uncinata stand in the French Alps. Comptes Rendus - Biologies, 2003, 326, 305-315.	0.1	7
59	Observations sur la mise en place du cerne chez le pin d'Alep (Pinus halepensis Mill.) : confrontation entre les mesures de croissance radiale, de densit� et les facteurs climatiques. Annals of Forest Science, 2001, 58, 769-784.	0.8	37
60	Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Global and Planetary Change, 2000, 26, 405-421.	1.6	58
61	Augmentation de productivité du chêne pubescent en région méditerranéenne française. Annales Des Sciences Forestières, 1999, 56, 211-219.	1.1	24