A A Knowlton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11296263/publications.pdf

Version: 2024-02-01

147566 223531 4,196 49 31 46 h-index citations g-index papers 49 49 49 4220 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exosomes as agents of change in the cardiovascular system. Journal of Molecular and Cellular Cardiology, 2017, 111, 40-50.	0.9	33
2	Mitochondrial Dynamics and Heart Failure. , 2015, 6, 507-526.		27
3	TLR4 mutation and HSP60-induced cell death in adult mouse cardiac myocytes. Cell Stress and Chaperones, 2015, 20, 527-535.	1.2	29
4	Estrogen and the female heart. Molecular and Cellular Endocrinology, 2014, 389, 31-39.	1.6	45
5	Cardiac myocyte exosomes: stability, HSP60, and proteomics. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H954-H965.	1.5	191
6	Estrogen and the cardiovascular system. , 2012, 135, 54-70.		308
7	Reply to "Letter to the Editor: â€~Understanding the WHI gap'― Physiological Genomics, 2012, 44, 330-3	3 3100	0
8	Impact of aging vs. estrogen loss on cardiac gene expression: estrogen replacement and inflammation. Physiological Genomics, 2011, 43, 1065-1073.	1.0	36
9	Regulation of heat shock protein 60 and 72 expression in the failing heart. Journal of Molecular and Cellular Cardiology, 2010, 48, 360-366.	0.9	47
10	Mitochondria and heart failure: new insights into an energetic problem. Minerva Cardioangiologica, 2010, 58, 213-29.	1.2	38
11	Role of Aging Versus the Loss of Estrogens in the Reduction in Vascular Function in Female Rats. Endocrinology, 2009, 150, 212-219.	1.4	38
12	HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H3052-H3056.	1.5	316
13	HSP60 in heart failure: abnormal distribution and role in cardiac myocyte apoptosis. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2238-H2247.	1.5	129
14	NFκB, heat shock proteins, HSF-1, and inflammation. Cardiovascular Research, 2006, 69, 7-8.	1.8	37
15	HSP60, Bax, Apoptosis and the Heart. Journal of Cellular and Molecular Medicine, 2005, 9, 51-58.	1.6	167
16	Effect of mutation of amino acids 246–251 (KRKHKK) in HSP72 on protein synthesis and recovery from hypoxic injury. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2519-H2525.	1.5	14
17	Estrogen, Heat Shock Proteins, and NFκB in Human Vascular Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1628-1633.	1.1	41
18	Estrogen and regulation of heat shock protein expression in female cardiomyocytes: cross-talk with NFĐºB signaling. Journal of Molecular and Cellular Cardiology, 2004, 36, 577-584.	0.9	71

#	Article	IF	Citations
19	HSP60, Bax, and Cardiac Apoptosis. Cardiovascular Toxicology, 2003, 3, 263-268.	1.1	27
20	Gender differences in the expression of heat shock proteins: the effect of estrogen. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H687-H692.	1.5	125
21	Cytosolic Heat Shock Protein 60, Hypoxia, and Apoptosis. Circulation, 2002, 106, 2727-2733.	1.6	147
22	Heme-oxygenase-1: Versatile Sentinel Against Injury. Journal of Molecular and Cellular Cardiology, 2002, 34, 1297-1300.	0.9	3
23	Cytosolic Heat Shock Protein 60, Apoptosis, and Myocardial Injury. Circulation, 2002, 105, 2899-2904.	1.6	260
24	Hsp72 expression enhances survival in adenosine triphosphate–depleted renal epithelial cells. Cell Stress and Chaperones, 2002, 7, 137.	1.2	24
25	Mutation of Amino Acids 566–572 (KKKVLDK) Inhibits Nuclear Accumulation of Heat Shock Protein 72 after Heat Shock. Journal of Molecular and Cellular Cardiology, 2001, 33, 49-55.	0.9	7
26	Regulation of Prostaglandin A1-induced Heat Shock Protein Expression in Isolated Cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2001, 33, 1447-1454.	0.9	15
27	Heat-shock factor-1, steroid hormones, and regulation of heat-shock protein expression in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H455-H464.	1.5	109
28	Activation of the heat shock response: relationship to energy metabolites. A 31P NMR study in rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H426-H433.	1.5	25
29	Activation of Heat-Shock Factor by Stretch-Activated Channels in Rat Hearts. Circulation, 2001, 104, 209-214.	1.6	38
30	Activation of HSF and selective increase in heat-shock proteins by acute dexamethasone treatment. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1091-H1097.	1.5	70
31	Phosphorylation at tyrosine-524 influences nuclear accumulation of HSP72 with heat stress. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H2143-H2149.	1.5	22
32	Expression of heat shock proteins in turtle and mammal hearts: relationship to anoxia tolerance. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R209-R214.	0.9	39
33	Prior heat stress inhibits apoptosis in adenosine triphosphate-depleted renal tubular cells. Kidney International, 1999, 55, 2224-2235.	2.6	63
34	Mutation of Amino Acids 246-251 Alters Nuclear Accumulation of Human Heat Shock Protein (HSP) 72 with Stress, But Does Not Reduce Viability. Journal of Molecular and Cellular Cardiology, 1999, 31, 523-532.	0.9	18
35	Differential Expression of Heat Shock Proteins in Normal and Failing Human Hearts. Journal of Molecular and Cellular Cardiology, 1998, 30, 811-818.	0.9	170
36	Tumor Necrosis Factor- \hat{l}_{\pm} Confers Resistance to Hypoxic Injury in the Adult Mammalian Cardiac Myocyte. Circulation, 1998, 97, 1392-1400.	1.6	134

#	Article	IF	CITATIONS
37	Blocking the Endogenous Increase in HSP 72 Increases Susceptibility to Hypoxia and Reoxygenation in Isolated Adult Feline Cardiocytes. Circulation, 1997, 95, 1523-1531.	1.6	93
38	Nuclear localization and the heat shock proteins. Journal of Biosciences, 1996, 21, 123-132.	0.5	49
39	Current Concepts in Transcription, Translation, and the Regulation of Gene Expression. Chest, 1995, 107, 241-248.	0.4	1
40	The role of heat shock proteins in the heart. Journal of Molecular and Cellular Cardiology, 1995, 27, 121-131.	0.9	115
41	Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs Journal of Clinical Investigation, 1995, 95, 388-403.	3.9	214
42	Heat-shock proteins, stress, and the heart. Annals of the New York Academy of Sciences, 1994, 723, 128-37.	1.8	6
43	Rapid expression of fibronectin in the rabbit heart after myocardial infarction with and without reperfusion Journal of Clinical Investigation, 1992, 89, 1060-1068.	3.9	115
44	Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia Journal of Clinical Investigation, 1991, 87, 139-147.	3.9	256
45	A single myocardial stretch or decreased systolic fiber shortening stimulates the expression of heat shock protein 70 in the isolated, erythrocyte-perfused rabbit heart Journal of Clinical Investigation, 1991, 88, 2018-2025.	3.9	80
46	Paradoxical increase in heart rate before conversion to sinus rhythm in patients with recent-onset atrial fibrillation. American Journal of Cardiology, 1990, 65, 930-932.	0.7	6
47	Rabbit heart fatty acid-binding protein. Isolation, characterization, and application of a monoclonal antibody Circulation Research, 1989, 65, 981-988.	2.0	30
48	Leakage of heart fatty acid binding protein with ischemia and reperfusion in the rat. Journal of Molecular and Cellular Cardiology, 1989, 21, 577-583.	0.9	64
49	Digoxin for Converting Recent-Onset Atrial Fibrillation to Sinus Rhythm. Annals of Internal Medicine, 1987, 106, 503.	2.0	304