Maria RâpÄf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1129546/publications.pdf

Version: 2024-02-01

471371 454834 1,091 67 17 30 citations h-index g-index papers 69 69 69 1261 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Influence of chitosan on mechanical, thermal, barrier and antimicrobial properties of PLA-biocomposites for food packaging. Composites Part B: Engineering, 2016, 102, 112-121.	5.9	112
2	New PLA/ZnO:Cu/Ag bionanocomposites for food packaging. EXPRESS Polymer Letters, 2017, 11, 531-544.	1.1	95
3	Study of the soil burial degradation of some PLA/CS biocomposites. Composites Part B: Engineering, 2018, 142, 251-262.	5.9	90
4	Evaluation of some ecoâ€friendly plasticizers for <scp>PLA</scp> films processing. Journal of Applied Polymer Science, 2016, 133, .	1.3	83
5	Influence of medicinal and aromatic plants into risk assessment of a new bioactive packaging based on polylactic acid (PLA). Food and Chemical Toxicology, 2019, 132, 110662.	1.8	44
6	PHB/Cellulose Fibers Based Materials: Physical, Mechanical and Barrier Properties. Agriculture and Agricultural Science Procedia, 2015, 6, 608-615.	0.6	39
7	Special Features of Polyester-Based Materials for Medical Applications. Polymers, 2022, 14, 951.	2.0	33
8	Bacterial Cellulose-Modified Polyhydroxyalkanoates Scaffolds Promotes Bone Formation in Critical Size Calvarial Defects in Mice. Materials, 2020, 13, 1433.	1.3	32
9	Bioactive Properties of Nanofibres Based on Concentrated Collagen Hydrolysate Loaded with Thyme and Oregano Essential Oils. Materials, 2020, 13, 1618.	1.3	28
10	Polylactic Acid/Cellulose Fibres Based Composites for Food Packaging Applications. Materiale Plastice, 2017, 54, 673-677.	0.4	27
11	Filler effect on the degradation of \hat{I}^3 -processed PLA/vinyl POSS hybrid. Radiation Physics and Chemistry, 2018, 153, 188-197.	1.4	25
12	Influence of Plasticizers Over Some Physico-chemical Properties of PLA. Materiale Plastice, 2017, 54, 73-78.	0.4	24
13	Photocatalytic Degradation of Ampicillin Using PLA/TiO2 Hybrid Nanofibers Coated on Different Types of Fiberglass. Water (Switzerland), 2020, 12, 176.	1.2	23
14	Bioactive Collagen Hydrolysate-Chitosan/Essential Oil Electrospun Nanofibers Designed for Medical Wound Dressings. Pharmaceutics, 2021, 13, 1939.	2.0	23
15	Valorization of Agri-Food Wastes as Sustainable Eco-Materials for Wastewater Treatment: Current State and New Perspectives. Materials, 2021, 14, 4581.	1.3	22
16	Recycled Polypropylene Improved with Thermoplastic Elastomers. International Journal of Polymer Science, 2017, 2017, 1-10.	1.2	21
17	PLA-Based Materials Containing Bio-Plasticizers and Chitosan Modified with Rosehip Seed Oil for Ecological Packaging. Polymers, 2021, 13, 1610.	2.0	20
18	Overview of biofilm-related problems in medical devices., 2017,, 3-23.		19

#	Article	IF	CITATIONS
19	Electrospun Nanosystems Based on PHBV and ZnO for Ecological Food Packaging. Polymers, 2021, 13, 2123.	2.0	17
20	Natural Polymers and Their Nanocomposites Used for Environmental Applications. Nanomaterials, 2022, 12, 1707.	1.9	17
21	Adsorption of Lead(II) from Aqueous Solution Using Chitosan and Polyvinyl Alcohol Blends. Analytical Letters, 2019, 52, 2365-2392.	1.0	16
22	Structural changes of modified polypropylene with thermoplastic elastomers for medical devices applications. Journal of Adhesion Science and Technology, 2016, 30, 1727-1740.	1.4	14
23	Effect of hydrolyzed collagen on thermal, mechanical and biological properties of poly(lactic acid) bionanocomposites. Iranian Polymer Journal (English Edition), 2019, 28, 271-282.	1.3	14
24	Novel Adsorbent Based on Banana Peel Waste for Removal of Heavy Metal lons from Synthetic Solutions. Materials, 2021, 14, 3946.	1.3	14
25	New Nanofibers Based on Protein By-Products with Bioactive Potential for Tissue Engineering. Materials, 2020, 13, 3149.	1.3	13
26	Availability of PLA/SIS blends for packaging and medical applications. Radiation Physics and Chemistry, 2020, 172, 108696.	1.4	13
27	Wool Keratin Hydrolysates for Bioactive Additives Preparation. Materials, 2021, 14, 4696.	1.3	13
28	Size particle effects on the thermal stability of poly(lactic acid) / hydroxyapatite hybrids for biodegradable package. Ceramics International, 2020, 46, 7288-7297.	2.3	12
29	Development of Bionanocomposites Based on PLA, Collagen and AgNPs and Characterization of Their Stability and In Vitro Biocompatibility. Applied Sciences (Switzerland), 2020, 10, 2265.	1.3	12
30	Multifunctional Membranesâ€"A Versatile Approach for Emerging Pollutants Removal. Membranes, 2022, 12, 67.	1.4	11
31	Chemiluminescence kinetic analysis on the oxidative degradation of poly(lactic acid). Journal of Thermal Analysis and Calorimetry, 2017, 128, 185-191.	2.0	10
32	Removal of Chromium(VI) from Aqueous Solution Using a Novel Green Magnetic Nanoparticle – Chitosan Adsorbent. Analytical Letters, 2019, 52, 2416-2438.	1.0	10
33	Adsorption of Copper (II) from Aqueous Solutions with Alginate/Clay Hybrid Materials. Materials, 2021, 14, 7187.	1. 3	10
34	Complex poly(lactic acid)-based biomaterial for urinary catheters: II. Biocompatibility. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 152-166.	0.7	9
35	Effect of Gamma Irradiation on the PLA-Based Blends and Biocomposites Containing Rosemary Ethanolic Extract and Chitosan. Polymers, 2022, 14, 1398.	2.0	9
36	Biodegradation study of some food packaging biopolymers based on PVA. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 2016, 73, .	0.2	8

#	Article	IF	CITATIONS
37	Impact strength elastomer composites based on polystyrene components separated from waste electrical and electronic equipment. Journal of Applied Polymer Science, 2020, 137, 48329.	1.3	8
38	Effect of Styrene-Diene Block Copolymers and Glass Bubbles on the Post-Consumer Recycled Polypropylene Properties. Materials, 2020, 13, 543.	1.3	8
39	An Innovative Method of Converting Ferrous Mill Scale Wastes into Superparamagnetic Nanoadsorbents for Water Decontamination. Materials, 2021, 14, 2539.	1.3	8
40	Comparative Analysis of Two Bioplasticizers Used to Modulate the Properties of PLA Biocomposites. Materiale Plastice, 2017, 54, 610-615.	0.4	8
41	Novel Nanocomposites Based on Bacterial Polyester/LDH-SDS Clay for Stem Cells Delivery in Modern Wound Healing Management. Materials, 2020, 13, 4488.	1.3	6
42	Sustainable Rabbit Skin Glue to Produce Bioactive Nanofibers for Nonactive Wound Dressings. Materials, 2020, 13, 5388.	1.3	6
43	Durability of LDPE/UHMWPE Composites under Accelerated Degradation. Polymers, 2020, 12, 1241.	2.0	6
44	Some Aspects Conditioning the Achieving of Filaments for 3D Printing from Physical Modified Corn Starch. Materiale Plastice, 2019, 56, 351-359.	0.4	6
45	Controlling the Melt Resistance to Flow as a Possibility of Improving the Miscibility and the Time Behavior of Some Blends Based on Starch. International Journal of Polymer Science, 2015, 2015, 1-12.	1.2	4
46	PLA/collagen hydrolysate/silver nanoparticles bionanocomposites for potential antimicrobial urinary drains. Polymer-Plastics Technology and Materials, 2019, 58, 2041-2055.	0.6	4
47	Sustainable Coated Nanostructures Based on Alginate and Electrospun Collagen Loaded with Antimicrobial Agents. Coatings, 2021, 11, 121.	1.2	4
48	Potential Use of Galium verum Essential Oil for Antibacterial Properties in Gelatin Based Hydrogels Prepared by Microwave Irradiation Technique. Revista De Chimie (discontinued), 2018, 69, 575-580.	0.2	4
49	Chitin- and Chitosan-Based Bionanocomposites for Active Packaging. , 2020, , 59-68.		3
50	STRUCTURAL, MORPHOLOGICAL AND THERMAL ANALYSIS OF SOME ALGINATE/STARCH/DELLITE HPS COMPOSITES FOR AQUEOUS Cu(II) REMOVAL. Cellulose Chemistry and Technology, 2019, 53, 561-571.	0.5	3
51	Recovered Polypropylene Composites with High Impact Strength. Materiale Plastice, 2017, 54, 18-21.	0.4	3
52	PHB/cellulose Fibres Composites Colonization and biodegradation behavior. Materiale Plastice, 2018, 55, 48-53.	0.4	3
53	In Vitro Degradation of PHB/Bacterial Cellulose Biocomposite Scaffolds. International Journal of Polymer Science, 2021, 2021, 1-8.	1.2	3
54	Antifungal Activity of Leather Treated with Anethum graveolens and Melaleuca alternifolia Essential Oils against Trichophyton interdigitale. Leather and Footwear Journal, 2020, 20, 133-144.	0.1	3

#	Article	IF	CITATIONS
55	Effect of PEG Content on the Mechanical Properties of Bis-GMA/TEGDMA/UDMA Dental Resin Composites. Key Engineering Materials, 2017, 752, 3-10.	0.4	2
56	Testing of Alginate/Chitosan/Glass Bubbles Adsorbent for Copper Removal from Wastewater. Materiale Plastice, 2021, 58, 19-26.	0.4	2
57	Salvia Officinalis Essential Oil Loaded Gelatin Hydrogel as Potential Antibacterial Wound Dressing Materials. Revista De Chimie (discontinued), 2018, 69, 410-414.	0.2	2
58	Sodium Alginate-Cellulose-Nano-Clay Composite Adsorbent Applied for Lead Removal from Wastewater. Revista De Chimie (discontinued), 2020, 71, 416-424.	0.2	2
59	SUSCEPTIBILITY OF THERMOPLASTIC BASED COMPOSITES TO DEGRADATION BY MICROORGANISMS. Environmental Engineering and Management Journal, 2015, 14, 2545-2554.	0.2	2
60	IMPROVEMENT OF SOME POST-CONSUMER POLYPROPYLENE (rPP) BY MELT MODIFICATION WITH STYRENE-DIENE BLOCK COPOLYMERS. Environmental Engineering and Management Journal, 2017, 16, 2615-2624.	0.2	2
61	Polymeric Nanofibers Manufactured by Electrospinning of Styrene-Ethylene-Butylene-Styrene (SEBS) Composites. Proceedings (mdpi), 2019, 29, .	0.2	1
62	Study of the Drug Diffusion Through Polymeric Membranes. Revista De Chimie (discontinued), 2018, 69, 783-789.	0.2	1
63	NOVEL BIOACTIVE AND BIODEGRADABLE MATERIALS FOR MEDICAL APPLICATIONS. Environmental Engineering and Management Journal, 2015, 14, 2703-2711.	0.2	1
64	Antifungal and antibacterial treatments based on natural compounds for lining leather and footwear articles. Leather and Footwear Journal, 2019, 19, 201-216.	0.1	1
65	Soil Burial Biodegradation of PLA/Hydrolysed Collagen/Silver Manoparticles Bionanocomposites. Revista De Chimie (discontinued), 2020, 71, 128-135.	0.2	1
66	Nanofibres Obtained by Electrospinning from Thermoplastic Elastomer and Graphene Composites. Proceedings (mdpi), 2019, 29, 12.	0.2	0
67	Biopolymeric-Hydrothermal Carbon Beads for Decontamination of Polluted Waters. Proceedings (mdpi), 2019, 29, 50.	0.2	0