
Peter R Zalupski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1129534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transient Radiation-Induced Berkelium(III) and Californium(III) Redox Chemistry in Aqueous Solution. Inorganic Chemistry, 2022, 61, 10822-10832.	1.9	3
2	Radiation-induced effects on the extraction properties of hexa- <i>n</i> -octylnitrilo-triacetamide (HONTA) complexes of americium and europium. Physical Chemistry Chemical Physics, 2021, 23, 1343-1351.	1.3	15
3	Curium(<scp>iii</scp>) radiation-induced reaction kinetics in aqueous media. Dalton Transactions, 2021, 50, 10853-10859.	1.6	5
4	Complexation of Lanthanides and Heavy Actinides with Aqueous Sulfur-Donating Ligands. Inorganic Chemistry, 2021, 60, 6125-6134.	1.9	15
5	Aminopolycarboxylates in trivalent f-element separations. Fundamental Theories of Physics, 2021, 60, 1-162.	0.1	2
6	Exploring Soft Donor Character of the N-2-Pyrazinylmethyl Group by Coordinating Trivalent Actinides and Lanthanides Using Aminopolycarboxylates. Inorganic Chemistry, 2020, 59, 138-150.	1.9	10
7	Radiolytic degradation of formic acid and formate in aqueous solution: modeling the final stages of organic mineralization under advanced oxidation process conditions. Water Research, 2020, 186, 116314.	5.3	7
8	Dataset and kinetic model reaction compilation for the radical-induced degradation of formic acid and formate in aqueous solution. Data in Brief, 2020, 32, 106271.	0.5	0
9	Does addition of 1-octanol as a phase modifier provide radical scavenging radioprotection for <i>N</i> , <i>N</i> , <i>N</i> , <i>N</i> 2,2,24978-24985.	1.3	12
10	Influence of a Preâ€organized Nâ€Donor Group on the Coordination of Trivalent Actinides and Lanthanides by an Aminopolycarboxylate Complexant. Chemistry - A European Journal, 2019, 25, 2545-2555.	1.7	8
11	Synthesis and characterization of a novel aminopolycarboxylate complexant for efficient trivalent f-element differentiation: N-butyl-2-acetamide-diethylenetriamine-N,N′,N′′,N′′-tetraacetic acid. Dalto Transactions, 2018, 47, 1092-1105.	011.6	10
12	Influence of a Heterocyclic Nitrogen-Donor Group on the Coordination of Trivalent Actinides and Lanthanides by Aminopolycarboxylate Complexants. Inorganic Chemistry, 2018, 57, 1373-1385.	1.9	23
13	Thermodynamic, Spectroscopic, and Computational Studies of <i>f</i> -Element Complexation by <i>N</i> -Hydroxyethyl-diethylenetriamine- <i>N,N</i> ′, <i>N</i> ″, <i>N</i> ″-tetraacetic Acid. Inorganic Chemistry, 2017, 56, 1722-1733.	1.9	19
14	Optical Absorption Characteristics For  7F0'→5L6' and  7F0'→ 7F6' Transitions of Trivalent Americ Aqueous Electrolyte Mixtures. Applied Spectroscopy, 2017, 71, 2608-2615.	ium Ion in 1.2	22
15	The Chemistry of Separations Ligand Degradation by Organic Radical Cations. Procedia Chemistry, 2016, 21, 61-65.	0.7	14
16	Thermodynamic and Spectroscopic Studies of Trivalent <i>f</i> -element Complexation with Ethylenediamine- <i>N,N</i> ′-di(acetylglycine)- <i>N,N</i> ′-diacetic Acid. Inorganic Chemistry, 2016, 55, 2977-2985.	1.9	18
17	Coordination Chemistry and f-Element Complexation by Diethylenetriamine- <i>N</i> , <i>N</i> ″-bis(acetylglycine)- <i>N</i> , <i>N</i> ′, <i>N</i> ″-triacetic Acid. Inorganic Chemistry, 2016, 55, 11600-11611.	1.9	18
18	Ion Interaction Models and Measurements of Eu3+ Complexation: HEDTA in Aqueous Solutions at 25 °C Containing 1:1 Na+ Salts and Citrate pH Buffer. Industrial & Engineering Chemistry Research, 2016, 55, 2083-2096.	1.8	4

PETER R ZALUPSKI

#	Article	IF	CITATIONS
19	Ion Interaction Models and Measurements of Eu3+ Complexation: DTPA in Aqueous Solutions at 25 °C Containing 1:1 Na+ Salts and Malonate pH Buffer. Industrial & Engineering Chemistry Research, 2016, 55, 2097-2118.	1.8	1
20	Complete Recovery of Actinides from UREX-like Raffinates Using a Combination of Hard and Soft Donor Ligands. II. Soft Donor Structure Variation. Solvent Extraction and Ion Exchange, 2015, 33, 523-539.	0.8	4
21	The Adsorption of Gold, Palladium, and Platinum from Acidic Chloride Solutions on Mesoporous Carbons. Solvent Extraction and Ion Exchange, 2014, 32, 737-748.	0.8	21
22	Features of the Thermodynamics of Trivalent Lanthanide/Actinide Distribution Reactions by Tri- <i>n</i> -octylphosphine Oxide and Bis(2-ethylhexyl) Phosphoric Acid. Journal of Physical Chemistry B, 2014, 118, 12725-12733.	1.2	11
23	Isopiestic Determination of the Osmotic Coefficients of NaNO3 + Eu(NO3)3 + H2O at 298.15 K and Representation with an Extended Ion-Interaction (Pitzer) Model. Journal of Chemical & Engineering Data, 2014, 59, 1574-1582.	1.0	7
24	Complete Recovery of Actinides from UREX-like Raffinates using a Combination of Hard and Soft Donor Ligands. Solvent Extraction and Ion Exchange, 2013, 31, 430-441.	0.8	11
25	Determination of Activity Coefficients of di-(2-ethylhexyl) Phosphoric Acid Dimer in Select Organic Solvents Using Vapor Phase Osmometry. Solvent Extraction and Ion Exchange, 2013, 31, 550-563.	0.8	4
26	Understanding the Solution Behavior of Minor Actinides in the Presence of EDTA4–, Carbonate, and Hydroxide Ligands. Inorganic Chemistry, 2013, 52, 3728-3737.	1.9	11
27	Activity Coefficients of di-(2-ethylhexyl) Phosphoric Acid in Select Diluents. Procedia Chemistry, 2012, 7, 209-214.	0.7	5
28	Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation. IOP Conference Series: Materials Science and Engineering, 2010, 9, 012076.	0.3	3
29	Redox-Based Separation of Americium from Lanthanides in Sulfate Media. Separation Science and Technology, 2010, 45, 1743-1752.	1.3	15
30	Thermodynamic Features of the Complexation ofÂNeodymium(III) and Americium(III) by Lactate inÂTrifluoromethanesulfonate Media. Journal of Solution Chemistry, 2010, 39, 1213-1229.	0.6	20
31	Thermodynamics of Cesium Extraction from Acidic Media by HCCD and PEG. Solvent Extraction and Ion Exchange, 2010, 28, 563-578.	0.8	16
32	Two-Phase Calorimetry. II. Studies on the Thermodynamics of Cesium and Strontium Extraction by Mixtures of H ⁺ CCD ^{â^'} and PEG-400 in FS-13. Solvent Extraction and Ion Exchange, 2010, 28, 161-183.	0.8	19
33	Twoâ€Phase Calorimetry. I. Studies on the Thermodynamics of Lanthanide Extraction by Bis(2â€EthylHexyl) Phosphoric Acid. Solvent Extraction and Ion Exchange, 2008, 26, 514-533.	0.8	23
34	Recent Progress in the Development of Supercritical Carbon Dioxide-Soluble Metal Ion Extractants: Solubility Enhancement through Silicon Functionalization. ACS Symposium Series, 2006, , 250-267.	0.5	0
35	Acidâ€Base and Organicâ€Water Distribution Equilibria for Symmetricallyâ€6ubstituted P,P′â€Dialkyl Alkylenebisphosphonic Acids. Solvent Extraction and Ion Exchange, 2006, 24, 177-195.	0.8	4
36	Metal Extraction by Sulfurâ€Containing Symmetricallyâ€6ubstituted Bisphosphonic Acids. Part I. P,P′â€di(2â€ethylhexyl) Methylenebisthioâ€Phosphonic Acid. Solvent Extraction and Ion Exchange, 2006, 24, 331-346.	0.8	6

Peter R Zalupski

#	Article	IF	CITATIONS
37	Investigation of Acid-Base Equilibria for Symmetrically Substituted P,P′-Dialkyl Partial Esters of Bisphosphonic Acids. Journal of Solution Chemistry, 2005, 34, 869-880.	0.6	3
38	Application of Molecular Connectivity Indices to the Design of Supercritical Carbon Dioxideâ€Soluble Metal Ion Extractants: SC O2Solubilities of Symmetrically Substituted Alkylenediphosphonic Acids. Separation Science and Technology, 2005, 39, 761-780.	1.3	4
39	Degradation Pathway and Generation of Monohydroxamic Acids from the Trihydroxamate Siderophore Deferrioxamine B. Applied and Environmental Microbiology, 2004, 70, 831-836.	1.4	26
40	Polyethylene glycol penetration into clay films: real time experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 238, 141-149.	2.3	6
41	An Investigation of Ester Group Steric Effects on Metal Ion Extraction by Symmetrically Substituted Methylenediphosphonic Acids. Solvent Extraction and Ion Exchange, 2004, 22, 89-103.	0.8	7
42	Metal Extraction by Silyl‣ubstituted Diphosphonic Acids. III. Ester Group Substituent Effects on Phosphoryl Oxygen Basicity. Solvent Extraction and Ion Exchange, 2003, 21, 331-345.	0.8	10
43	EXTRACTION OF ALKALINE EARTH AND ACTINIDE CATIONS BY MIXTURES OF DI(2-ETHYLHEXYL) ALKYLENEDIPHOSPHONIC ACIDS AND NEUTRAL SYNERGISTS. Solvent Extraction and Ion Exchange, 2002, 20, 447-469.	0.8	12
44	Metal extraction by silyl-substituted diphosphonic acids. II. Effect of alkylene bridge length on aggregation and metal ion extraction behavior. Separation Science and Technology, 2002, 37, 2289-2315.	1.3	13
45	Facile high yielding synthesis of symmetric esters of methylenebisphosphonic acid. Tetrahedron, 2001, 57, 8637-8645.	1.0	34