Mélissa Caza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11294755/publications.pdf Version: 2024-02-01

ΜÃΩμεςλ Cλ7λ

#	Article	IF	CITATIONS
1	Automated 16S Sequencing Using an R-Based Analysis Module for Bacterial Identification. Microbiology Spectrum, 2022, 10, e0040822.	3.0	2
2	Approach to Assessment of New Swabs and Viral Transport Media for SARS-CoV-2 Testing. Journal of Clinical Microbiology, 2021, 59, .	3.9	5
3	The monothiol glutaredoxin Grx4 influences thermotolerance, cell wall integrity, and Mpk1 signaling in Cryptococcus neoformans. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	5
4	Evaluation of the clinical and analytical performance of the Seegene allplexâ,,¢ SARS-CoV-2 variants I assay for the detection of variants of concern (VOC) and variants of interests (VOI). Journal of Clinical Virology, 2021, 144, 104996.	3.1	16
5	Vam6/Vps39/ <scp>TRAP1</scp> â€domain proteins influence vacuolar morphology, iron acquisition and virulence in <i>Cryptococcus neoformans</i> . Cellular Microbiology, 2021, 23, e13400.	2.1	3
6	A J Domain Protein Functions as a Histone Chaperone to Maintain Genome Integrity and the Response to DNA Damage in a Human Fungal Pathogen. MBio, 2021, 12, e0327321.	4.1	2
7	The Novel J-Domain Protein Mrj1 Is Required for Mitochondrial Respiration and Virulence in Cryptococcus neoformans. MBio, 2020, 11, .	4.1	15
8	Involvement of Mrs3/4 in Mitochondrial Iron Transport and Metabolism in Cryptococcus neoformans. Journal of Microbiology and Biotechnology, 2020, 30, 1142-1148.	2.1	2
9	The cAMP/Protein Kinase A Pathway Regulates Virulence and Adaptation to Host Conditions in Cryptococcus neoformans. Frontiers in Cellular and Infection Microbiology, 2019, 9, 212.	3.9	57
10	Role of clathrin-mediated endocytosis in the use of heme and hemoglobin by the fungal pathogen <i>Cryptococcus neoformans</i> . Cellular Microbiology, 2019, 21, e12961.	2.1	24
11	Vacuolar zinc transporter Zrc1 is required for detoxification of excess intracellular zinc in the human fungal pathogen Cryptococcus neoformans. Journal of Microbiology, 2018, 56, 65-71.	2.8	13
12	The Monothiol Glutaredoxin Grx4 Regulates Iron Homeostasis and Virulence in Cryptococcus neoformans. MBio, 2018, 9, .	4.1	48
13	The Sec1/Munc18 (SM) protein Vps45 is involved in iron uptake, mitochondrial function and virulence in the pathogenic fungus Cryptococcus neoformans. PLoS Pathogens, 2018, 14, e1007220.	4.7	22
14	ATG Genes Influence the Virulence of Cryptococcus neoformans through Contributions beyond Core Autophagy Functions. Infection and Immunity, 2018, 86, .	2.2	25
15	A P4-ATPase subunit of the Cdc50 family plays a role in iron acquisition and virulence in <i>Cryptococcus neoformans</i> . Cellular Microbiology, 2017, 19, e12718.	2.1	21
16	The ZIP family zinc transporters support the virulence of <i>Cryptococcus neoformans</i> . Medical Mycology, 2016, 54, 605-615.	0.7	38
17	The Zinc Finger Protein Mig1 Regulates Mitochondrial Function and Azole Drug Susceptibility in the Pathogenic Fungus Cryptococcus neoformans. MSphere, 2016, 1, .	2.9	28
18	The lysine biosynthetic enzyme Lys4 influences iron metabolism, mitochondrial function and virulence in Cryptococcus neoformans. Biochemical and Biophysical Research Communications, 2016, 477, 706-711.	2.1	10

MéLISSA CAZA

#	Article	IF	CITATIONS
19	Secretome profiling of Cryptococcus neoformans reveals regulation of a subset of virulence-associated proteins and potential biomarkers by protein kinase A. BMC Microbiology, 2015, 15, 206.	3.3	47
20	The endosomal sorting complex required for transport machinery influences haem uptake and capsule elaboration in <scp><i>C</i></scp> <i>ryptococcus neoformans</i> . Molecular Microbiology, 2015, 96, 973-992.	2.5	45
21	Catecholate siderophore esterases Fes, <scp>IroD</scp> and <scp>IroE</scp> are required for salmochelins secretion following utilization, but only <scp>IroD</scp> contributes to virulence of extraâ€intestinal pathogenic <scp><i>E</i></scp> <i>scherichia coli</i> . Molecular Microbiology, 2015, 97. 717-732.	2.5	22
22	Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans. Fungal Genetics and Biology, 2015, 75, 11-19.	2.1	32
23	Defects in Phosphate Acquisition and Storage Influence Virulence of Cryptococcus neoformans. Infection and Immunity, 2014, 82, 2697-2712.	2.2	52
24	The Small RNA RyhB Contributes to Siderophore Production and Virulence of Uropathogenic Escherichia coli. Infection and Immunity, 2014, 82, 5056-5068.	2.2	61
25	Cryptococcus neoformans Requires the ESCRT Protein Vps23 for Iron Acquisition from Heme, for Capsule Formation, and for Virulence. Infection and Immunity, 2013, 81, 292-302.	2.2	65
26	Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Frontiers in Cellular and Infection Microbiology, 2013, 3, 80.	3.9	224
27	Adaptation of Cryptococcus neoformans to Mammalian Hosts: Integrated Regulation of Metabolism and Virulence. Eukaryotic Cell, 2012, 11, 109-118.	3.4	97
28	A defect in <scp>ATP</scp> •itrate lyase links acetylâ€ <scp>CoA</scp> production, virulence factor elaboration and virulence in <i><scp>C</scp>ryptococcus neoformans</i> . Molecular Microbiology, 2012, 86, 1404-1423.	2.5	29
29	Secretion, but not overall synthesis, of catecholate siderophores contributes to virulence of extraintestinal pathogenic <i>Escherichia coli</i> . Molecular Microbiology, 2011, 80, 266-282.	2.5	60
30	The Ins and Outs of siderophore mediated iron uptake by extra-intestinal pathogenic Escherichia coli. Veterinary Microbiology, 2011, 153, 89-98.	1.9	103
31	Klebsiella pneumoniae Yersiniabactin Promotes Respiratory Tract Infection through Evasion of Lipocalin 2. Infection and Immunity, 2011, 79, 3309-3316.	2.2	227
32	A small RNA promotes siderophore production through transcriptional and metabolic remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15223-15228.	7.1	84
33	Contribution of the SitABCD, MntH, and FeoB Metal Transporters to the Virulence of Avian Pathogenic <i>Escherichia coli</i> O78 Strain χ7122. Infection and Immunity, 2008, 76, 601-611.	2.2	90
34	Specific Roles of the <i>iroBCDEN</i> Genes in Virulence of an Avian Pathogenic <i>Escherichia coli</i> O78 Strain and in Production of Salmochelins. Infection and Immunity, 2008, 76, 3539-3549.	2.2	100
35	Iha from an Escherichia coli Urinary Tract Infection Outbreak Clonal Group A Strain Is Expressed In Vivo in the Mouse Urinary Tract and Functions as a Catecholate Siderophore Receptor. Infection and Immunity, 2006, 74, 3427-3436.	2.2	56
36	Inactivation of the Pst System Reduces the Virulence of an Avian Pathogenic Escherichia coli O78 Strain. Infection and Immunity, 2005, 73, 4138-4145.	2.2	88