
Quanli Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11293214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis. Cell, 2018, 174, 1549-1558.e14.	28.9	215
2	Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nature Communications, 2019, 10, 4976.	12.8	177
3	Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals. Nature Communications, 2017, 8, 15587.	12.8	82
4	De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories. Nature Communications, 2021, 12, 6085.	12.8	62
5	RNAi expression tuning, microfluidic screening, and genome recombineering for improved protein production in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9324-9332.	7.1	54
6	Current state of aromatics production using yeast: achievements and challenges. Current Opinion in Biotechnology, 2020, 65, 65-74.	6.6	35
7	Combinatorial analysis of enzymatic bottlenecks of l-tyrosine pathway by p-coumaric acid production in Saccharomyces cerevisiae. Biotechnology Letters, 2017, 39, 977-982.	2.2	29
8	Metabolic engineering strategies for improvement of ethanol production in cellulolytic Saccharomyces cerevisiae. FEMS Yeast Research, 2018, 18, .	2.3	29
9	<i>De Novo</i> Biosynthesis of Caffeic Acid from Glucose by Engineered <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2020, 9, 756-765.	3.8	29
10	Strategies and challenges for metabolic rewiring. Current Opinion in Systems Biology, 2019, 15, 30-38.	2.6	27
11	Metabolic network remodelling enhances yeast's fitness on xylose using aerobic glycolysis. Nature Catalysis, 2021, 4, 783-796.	34.4	23
12	POT1-mediated δ-integration strategy for high-copy, stable expression of heterologous proteins in Saccharomyces cerevisiae. FEMS Yeast Research, 2017, 17, .	2.3	17
13	Engineering yeast phospholipid metabolism for de novo oleoylethanolamide production. Nature Chemical Biology, 2020, 16, 197-205.	8.0	16
14	Identification of the bacteriocin subtilosin A and loss of purL results in its high-level production in Bacillus amyloliquefaciens. Research in Microbiology, 2012, 163, 470-478.	2.1	15
15	Modular Pathway Rewiring of Yeast for Amino Acid Production. Methods in Enzymology, 2018, 608, 417-439.	1.0	12
16	A high-throughput method for screening of L-tyrosine high-yield strains by <i>Saccharomyces cerevisiae</i> . Journal of General and Applied Microbiology, 2018, 64, 198-201.	0.7	8
17	Scarless gene deletion using mazF as a new counter-selection marker and an improved deletion cassette assembly method in Saccharomyces cerevisiae. Journal of General and Applied Microbiology, 2014, 60, 89-93.	0.7	7
18	mazF-mediated deletion system for large-scale genome engineering in Saccharomyces cerevisiae. Research in Microbiology, 2014, 165, 836-840.	2.1	4

#	Article	IF	CITATIONS
19	Optimization of the l-tyrosine metabolic pathway in Saccharomyces cerevisiae by analyzing p-coumaric acid production. 3 Biotech, 2020, 10, 258.	2.2	4
20	Comparative transcriptome analysis of genomic region deletion strain with enhanced l-tyrosine production in Saccharomyces cerevisiae. Biotechnology Letters, 2020, 42, 453-460.	2.2	1