Jean H Brittain

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/11293118/publications.pdf
Version: 2024-02-01

5 Multiecho reconstruction for simultaneous waterâ€fat decomposition and T2* estimation. Journal of
Magnetic Resonance Imaging, 2007, 26, 1153-1161.

6 Quantification of Hepatic Steatosis with T1-independent, T2*-corrected MR Imaging with Spectral
Modeling of Fat: Blinded Comparison with MR Spectroscopy. Radiology, 2011, 258, 767-775.
7.3
8. Waterâ€"fat separation with IDEAL gradient-echo imaging. Journal of Magnetic Resonance Imaging, 2007, 25, 644-652.
3.4

300
$9 \quad$ Fat and water magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 2010, 31, 4-18.
3.4
$\mathrm{T}\langle$ sub> $1<|$ sub \rangle independent, $\mathrm{T}\langle$ sub $\rangle 2\langle |$ sub \rangle^{*} corrected MRI with accurate spectral modeling for
12 quantification of fat: Validation in a fatâ€waterâ€£PIO phantom. Journal of Magnetic Resonance Imaging,
3.4

191 2009, 30, 1215-1222.

13	T<sub> $1<\mid$ sub> independent, T <sub> $2<\mid$ sub>[*] corrected chemical shift based fatấ" water separation with multiâ€peak fat spectral modeling is an accurate and precise measure of hepatic steatosis. Journal of Magnetic Resonance Imaging, 2011, 33, 873-881.	3.4	183

14 Combination of complexâ€based and magnitudeâ€based multiecho waterâ€fat separation for accurate quantification of fatâ€fraction. Magnetic Resonance in Medicine, 2011, 66, 199-206.

Phase and amplitude correction for multiâ€echo waterâ€"fat separation with bipolar acquisitions.
Journal of Magnetic Resonance Imaging, 2010, 31, 1264-1271.

T1- and T2-weighted fast spin-echo imaging of the brachial plexus and cervical spine with IDEAL
waterâ€"fat separation. Journal of Magnetic Resonance Imaging, 2006, 24, 825-832.
High-Resolution 3D Cartilage Imaging with IDEALâ€"SPGR at 3 T. American Journal of Roentgenology,

Validation of MRI biomarkers of hepatic steatosis in the presence of iron overload in the ob/ob mouse.

Journal of Magnetic Resonance Imaging, 2012, 35, 844-851.
27 Linearity and Bias of Proton Density Fat Fraction as a Quantitative Imaging Biomarker: A Multicenter, Multiplatform, Multivendor Phantom Study. Radiology, 2021, 298, 640-651.

29	Increased volume of coverage for abdominal contrastâ€enhanced MR angiography with twoâ€dimensional autocalibrating parallel imaging: Initial experience at 3.0 Tesla. Journal of Magnetic Resonance Imaging, 2009, 30, 1093-1100.	3.4	30
30	Estimation of liver $\langle\mathrm{i}\rangle \mathrm{T}\langle\mid \mathrm{i}\rangle^{*}\langle$ sub $\rangle 2\langle/$ sub \rangle in transfusionâ frelated iron overload in patients with weighted least squares <i>T</i>*₂ IDEAL. Magnetic Resonance in Medicine, 2012, 67, 183-190.	3.0	30
31	Improved fat suppression using multipeak reconstruction for IDEAL chemical shift fatâ€water separation: Application with fast spin echo imaging. Journal of Magnetic Resonance Imaging, 2009, 29, 436-442.	3.4	28

32 T₂ấweighted 3D fast spin echo imaging with waterâ€"fat separation in a single acquisition.
$3.4 \quad 28$ Journal of Magnetic Resonance Imaging, 2010, 32, 745-751.

[^0]$38 \quad$ Three-dimensional fluid-suppressed T2-prep flow-independent peripheral angiography using balanced

Waterâ€silicone separated volumetric MR acquisition for rapid assessment of breast implants. Journal of Magnetic Resonance Imaging, 2012, 35, 1216-1221.Temperatureâcorrected proton density fat fraction estimation using chemical shiftáeencoded MRI in
phantoms. Magnetic Resonance in Medicine, 2021, 86, 69-81.

[^0]: 35 Robust multipoint waterâ€fat separation using fat likelihood analysis. Magnetic Resonance in Medicine,
 2012, 67, 1065-1076.

