Rj Trew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11293082/publications.pdf

Version: 2024-02-01

55	1,740	17 h-index	35
papers	citations		g-index
55	55	55	969
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Physics based modeling of gate leakage current due to traps in AlGaN/GaN HFETs. Solid-State Electronics, 2013, 80, 23-27.	0.8	18
2	Large-signal FET models and a new AlGaN/GaN HFET model for power amplifier design. , 2012, , .		0
3	Impedance Anomalies and RF Performance Limitations in AlGaN/GaN HFET's., 2006,,.		3
4	Linearity Limitations of AlGaN/GaN HFET's., 2006, , .		4
5	Nonlinear source resistance in high-voltage microwave AlGaN/GaN HFETs. IEEE Transactions on Microwave Theory and Techniques, 2006, 54, 2061-2067.	2.9	83
6	RF knee walkout and source access region of unpassivated HFETs. Electronics Letters, 2006, 42, 1425.	0.5	6
7	RF Breakdown and Large-Signal Modeling of AlGaN/GaN HFET's. , 2006, , .		11
8	High-Frequency Solid-State Electronic Devices. IEEE Transactions on Electron Devices, 2005, 52, 638-649.	1.6	87
9	Microwave AlGaN/GaN HFETs. IEEE Microwave Magazine, 2005, 6, 56-66.	0.7	73
10	SiC and GaN transistors - is there one winner for microwave power applications?. Proceedings of the IEEE, 2002, 90, 1032-1047.	16.4	169
11	The role of government support for research in U.S. academic institutions. IEEE Transactions on Microwave Theory and Techniques, 2002, 50, 1028-1033.	2.9	1
12	Microwave solid-state active devices. IEEE Transactions on Microwave Theory and Techniques, 2002, 50, 760-779.	2.9	39
13	Wide bandgap semiconductor transistors for microwave power amplifiers. IEEE Microwave Magazine, 2000, 1, 46-54.	0.7	77
14	Chapter 6 SiC Microwave Devices. Semiconductors and Semimetals, 1998, , 237-282.	0.4	8
15	High power applications for GaN-based devices. Solid-State Electronics, 1997, 41, 1561-1567.	0.8	72
16	GaN MESFETs for high-power and high-temperature microwave applications. Electronics Letters, 1995, 31, 498-500.	0.5	44
17	HIGH FREQUENCY, HIGH TEMPERATURE FIELD-EFFECT TRANSISTORS FABRICATED FROM WIDE BAND GAP SEMICONDUCTORS. International Journal of High Speed Electronics and Systems, 1995, 06, 211-236.	0.3	11
18	Pnp HBT with 66 GHz f/sub max/. IEEE Electron Device Letters, 1994, 15, 91-93.	2.2	23

#	Article	lF	Citations
19	High temperature DC and RF performance of p-type diamond MESFET: comparison with n-type GaAs MESFET. IEEE Electron Device Letters, 1994, 15, 292-294.	2.2	11
20	Self-aligned AlGaAs/GaAs HBT with selectively regrown OMVPE emitter. IEEE Electron Device Letters, 1993, 14, 295-297.	2.2	13
21	Monolithically integrated SQW laser and HBT laser driver via selective OMVPE regrowth. IEEE Photonics Technology Letters, 1993, 5, 791-794.	1.3	4
22	Phase matched AlGaAs/GaAs complementary HBTs for push-pull operation. Electronics Letters, 1992, 28, 1615.	0.5	2
23	Yield optimization using a GaAs process simulator coupled to a physical device model. IEEE Transactions on Microwave Theory and Techniques, 1992, 40, 1353-1363.	2.9	45
24	Experimental values for the hole diffusion coefficient and collector transit velocity in P-n-p AlGaAs/GaAs HBTs. IEEE Electron Device Letters, 1991, 12, 54-56.	2.2	11
25	The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proceedings of the IEEE, 1991, 79, 598-620.	16.4	335
26	Gate breakdown in MESFETs and HEMTs. IEEE Electron Device Letters, 1991, 12, 524-526.	2.2	83
27	Millimeter-wave AlGaAs/GaAs p-n-p HBT. IEEE Electron Device Letters, 1991, 12, 382-384.	2.2	12
28	Extraction of the parameters of equivalent circuits of microwave transistors using tree annealing. IEEE Transactions on Microwave Theory and Techniques, 1990, 38, 1711-1718.	2.9	39
29	Improved breakdown voltage in GaAs MESFETs utilizing surface layers of GaAs grown at a low temperature by MBE. IEEE Electron Device Letters, 1990, 11, 561-563.	2.2	129
30	Hydrodynamic hot-electron transport simulation based on the Monte Carlo method. Solid-State Electronics, 1989, 32, 1347-1351.	0.8	8
31	A large-signal, analytic model for the GaAs MESFET. IEEE Transactions on Microwave Theory and Techniques, 1988, 36, 231-238.	2.9	102
32	Hydrodynamic hot-electron transport model with Monte Carlo-generated transport parameters. Solid-State Electronics, 1988, 31, 571-574.	0.8	33
33	Sensitivity Of GaAs Impatt Diodes To Variations In Design Parameters. , 1987, , .		0
34	High-frequency limits of millimeter-wave transistors. IEEE Electron Device Letters, 1986, 7, 640-642.	2.2	26
35	Deep-level and profile effects upon low-noise ion-implanted GaAs MESFET's. IEEE Transactions on Electron Devices, 1985, 32, 877-882.	1.6	6
36	Profile Studies of Ion-Implanted MESFET's. IEEE Transactions on Microwave Theory and Techniques, 1983, 31, 1066-1071.	2.9	20

#	Article	IF	Citations
37	Optimum semiconductors for high-frequency and low-noise MESFET applications. IEEE Transactions on Electron Devices, 1983, 30, 1411-1413.	1.6	7
38	Profile studies of ion-implanted MESFET's. IEEE Transactions on Electron Devices, 1983, 30, 1844-1849.	1.6	15
39	Optimum profiles for low-noise ion-implanted GaAs MESFETs. , 1983, , .		0
40	Odd Order Impedance Matching Networks for Low Cost Microwave Integrated Circuits. , 1982, , .		0
41	A Broad-Band Amplifier Output Network Design. IEEE Transactions on Microwave Theory and Techniques, 1982, 30, 192-196.	2.9	13
42	Compound semiconductors for low-noise microwave MESFET applications. IEEE Transactions on Electron Devices, 1980, 27, 1256-1262.	1.6	10
43	Parameter Insensitive Matching Circuits for Low Cost Integrated Circuits. , 0, , .		1
44	Profile Studies of Ion-Implanted MESFETS., 0,,.		0
45	A New Method of Reducing Phase Noise in GaAs FET Oscillators. , 0, , .		21
46	Low Frequency Noise Measurements of GaAs FETs., 0,,.		5
47	Equivalent Circuits For High Frequency Transistors. , 0, , .		7
48	A parameter extraction technique for heterojunction bipolar transistors. , 0, , .		22
49	Simulation of GaAs MESFET process yield from RF large signal figures-of-merit. , 0, , .		0
50	Simulation of the variation and sensitivity of GaAs MESFET large signal figures-of-merit due to process, material, parasitic, and bias parameters. , 0, , .		2
51	Doping profiles for optimum class B performance of GaAs MESFET amplifiers. , 0, , .		3
52	Simulated performance optimization of GaAs MESFET amplifiers. , 0, , .		6
53	Yield optimization using a GaAs process simulator coupled to a physical device model. , 0, , .		5
54	AlGaN/GaN HFET amplifier performance and limitations. , 0, , .		9