Yimu Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11290766/publications.pdf

Version: 2024-02-01

516710 677142 1,593 20 16 22 citations h-index g-index papers 25 25 25 2100 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling. Cell, 2019, 176, 913-927.e18.	28.9	398
2	Organâ€Onâ€Aâ€Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Advanced Healthcare Materials, 2018, 7, 1700506.	7.6	227
3	A multi-organ chip with matured tissue niches linked by vascular flow. Nature Biomedical Engineering, 2022, 6, 351-371.	22.5	162
4	Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials, 2019, 198, 3-26.	11.4	149
5	Biomaterial based cardiac tissue engineering and its applications. Biomedical Materials (Bristol), 2015, 10, 034004.	3.3	79
6	Highly Elastic and Moldable Polyester Biomaterial for Cardiac Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2016, 2, 780-788.	5.2	79
7	Biowire Model of Interstitial and Focal Cardiac Fibrosis. ACS Central Science, 2019, 5, 1146-1158.	11.3	78
8	Engineering microenvironment for human cardiac tissue assembly in heart-on-a-chip platform. Matrix Biology, 2020, 85-86, 189-204.	3.6	70
9	Towards chamber specific heart-on-a-chip for drug testing applications. Advanced Drug Delivery Reviews, 2020, 165-166, 60-76.	13.7	52
10	The Role of Tissue Engineering and Biomaterials in Cardiac Regenerative Medicine. Canadian Journal of Cardiology, 2014, 30, 1307-1322.	1.7	49
11	The Effect of Serial Passaging on the Proliferation and Differentiation of Bovine Adipose-Derived Stem Cells. Cells Tissues Organs, 2012, 195, 414-427.	2.3	33
12	Biomaterials and Culture Systems for Development of Organoid and Organ-on-a-Chip Models. Annals of Biomedical Engineering, 2020, 48, 2002-2027.	2.5	33
13	A Multimaterial Microphysiological Platform Enabled by Rapid Casting of Elastic Microwires. Advanced Healthcare Materials, 2019, 8, e1801187.	7.6	26
14	Kinase inhibitor screening using artificial neural networks and engineered cardiac biowires. Scientific Reports, 2017, 7, 11807.	3.3	25
15	A framework for developing sex-specific engineered heart models. Nature Reviews Materials, 2022, 7, 295-313.	48.7	22
16	Mapping signalling perturbations in myocardial fibrosis via the integrative phosphoproteomic profiling of tissue from diverse sources. Nature Biomedical Engineering, 2020, 4, 889-900.	22.5	17
17	Human pluripotent stem cell-derived cardiomyocyte based models for cardiotoxicity and drug discovery. Expert Opinion on Drug Safety, 2016, 15, 1455-1458.	2.4	16
18	milliPillar: A Platform for the Generation and Real-Time Assessment of Human Engineered Cardiac Tissues. ACS Biomaterials Science and Engineering, 2021, 7, 5215-5229.	5 . 2	14

Үіми Zнао

#	Article	IF	CITATIONS
19	Multilineage co-culture of adipose-derived stem cells for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 826-837.	2.7	7
20	Changes in extracellular matrix in failing human non-ischemic and ischemic hearts with mechanical unloading. Journal of Molecular and Cellular Cardiology, 2022, 166, 137-151.	1.9	4