Hu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11290220/publications.pdf

Version: 2024-02-01

233421 430874 2,170 61 18 45 h-index citations g-index papers 61 61 61 1374 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Microstructures and high-temperature oxidation behavior of directionally solidified Nb–Si-based alloys with Re additions. Rare Metals, 2023, 42, 273-280.	7.1	3
2	Microstructure, cracking behavior and control of Al–Fe–V–Si alloy produced by selective laser melting. Rare Metals, 2023, 42, 1353-1362.	7.1	11
3	Mechanism of yttrium in deep desulfurization of NiCoCrAlY alloy during vacuum induction melting process. Rare Metals, 2022, 41, 218-225.	7.1	9
4	Effect of the Initial Texture, Recrystallization and Re-Dissolution Process on the Evolution of Texture during Solution Treatment of the 7A65 Hot Rolled Plate. Metals, 2022, 12, 8.	2.3	3
5	High-temperature oxidation behavior of Nb–Si-based alloy with separate vanadium, tantalum, tungsten and zirconium addition. Rare Metals, 2021, 40, 607-615.	7.1	13
6	Cracking criterion for high strength Al–Cu alloys fabricated by selective laser melting. Additive Manufacturing, 2021, 37, 101709.	3.0	14
7	Aging responses of an Al-Cu alloy fabricated by selective laser melting. Additive Manufacturing, 2021, 37, 101635.	3.0	8
8	Top surface roughness evolution during selective laser melting of AlCu5MnCdVA aluminum alloy. Journal of Manufacturing Processes, 2021, 64, 1180-1195.	5.9	13
9	The Portevin-Le Chatelier (PLC) effect in an Al-Cu aluminum alloy fabricated by selective laser melting. Materials Characterization, 2021, 178, 111198.	4.4	26
10	High strength Al–Li alloy development for laser powder bed fusion. Additive Manufacturing, 2021, 47, 102249.	3.0	11
11	Effect of La addition on microstructure and mechanical properties of hypoeutectic Al-7Si aluminum alloy. China Foundry, 2021, 18, 481-487.	1.4	3
12	Effect of defocusing distance on laser powder bed fusion of high strength Al–Cu–Mg–Mn alloy. Virtual and Physical Prototyping, 2020, 15, 325-339.	10.4	38
13	Multi-Refinement Effect of Rare Earth Lanthanum on \hat{l}_{\pm} -Al and Eutectic Si Phase in Hypoeutectic Al-7Si Alloy. Metals, 2020, 10, 621.	2.3	9
14	A high strength Al–Li alloy produced by laser powder bed fusion: Densification, microstructure, and mechanical properties. Additive Manufacturing, 2020, 35, 101346.	3.0	13
15	Mechanical behavior and microstructure evolution of Al-Cu-Mg alloy produced by laser powder bed fusion: Effect of heat treatment. Materials Characterization, 2020, 165, 110364.	4.4	18
16	Microstructural evolution of Ti–47Al–2Cr–2Nb–0.8B alloy prepared by semi-solid process. Rare Metals, 2020, 39, 1262-1266.	7.1	2
17	Surface Remeltingâ€Mediated Improvement in Oxidation Resistance of Cr ₂ Nbâ€Containing Nbâ€Siâ€Based Alloys at High Temperatures. Advanced Engineering Materials, 2019, 21, 1900425.	3 . 5	2
18	Microstructure, mechanical properties and strengthening mechanisms of AlCu5MnCdVA aluminum alloy fabricated by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 154-166.	5 . 6	65

#	Article	IF	CITATIONS
19	Quantitative Relationship Analysis of Mechanical Properties with Mg Content and Heat Treatment Parameters in Al–7Si Alloys Using Artificial Neural Network. Materials, 2019, 12, 718.	2.9	7
20	On the role of Zr content into Portevin-Le Chatelier (PLC) effect of selective laser melted high strength Al-Cu-Mg-Mn alloy. Materials Letters, 2019, 248, 5-7.	2.6	66
21	Effect of holding pressure on density and cooling rate of cast Al-Si alloy during additive pressure casting. China Foundry, 2019, 16, 363-370.	1.4	3
22	Densification behavior, microstructure evolution, and mechanical performances of selective laser melted Ti-5Al-2.5Snâ€Î± titanium alloy: Effect of laser energy input. Journal of Alloys and Compounds, 2019, 774, 1024-1035.	5 . 5	24
23	Effect of Holding Pressure on Microstructure and Mechanical Properties of A356 Aluminum Alloy. Journal of Materials Engineering and Performance, 2018, 27, 483-491.	2.5	18
24	On the role of atmospheric oxygen into mechanical properties and fracture behavior of selective laser melted AlCu5MnCdVA. Materials and Design, 2018, 150, 18-27.	7.0	39
25	Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: From single tracks to cubic samples. Journal of Materials Processing Technology, 2018, 256, 69-77.	6.3	115
26	Microstructure and High-Temperature Oxidation Behavior of Dy-Doped Nb–Si-Based Alloys. Acta Metallurgica Sinica (English Letters), 2018, 31, 742-752.	2.9	7
27	Energy Density Dependence of Bonding Characteristics of Selective Laser-Melted Nb–Si-Based Alloy on Titanium Substrate. Acta Metallurgica Sinica (English Letters), 2018, 31, 477-486.	2.9	12
28	Contact angle evolution during selective laser melting. Materials and Design, 2018, 139, 304-313.	7.0	42
29	Effect of Trace O Element on High-temperature Wettability Between Ni3Al Melt and Y2O3 Ceramic. Acta Metallurgica Sinica (English Letters), 2018, 31, 552-560.	2.9	4
30	Microstructure and Corrosion Characterization of Cr Film on Carburized CSS-42L Aerospace Bearing Steel by Filtered Cathodic Vacuum Arc Deposition. Coatings, 2018, 8, 313.	2.6	3
31	Evolution of carbides on surface of carburized M50NiL bearing steel. Journal of Iron and Steel Research International, 2018, 25, 1198-1211.	2.8	16
32	Mechanisms of reactive element Y on the purification of K4169 superalloy during vacuum induction melting. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 696-703.	4.9	28
33	Behavior and Mechanism of High-Temperature Stability between Tial-Based Alloy and Y2O3-Al2O3 Composite Crucibles. Materials, 2018, 11, 1107.	2.9	5
34	High-Temperature Wettability and Interactions between Y-Containing Ni-Based Alloys and Various Oxide Ceramics. Materials, 2018, 11, 749.	2.9	15
35	Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys. Journal of Alloys and Compounds, 2018, 764, 977-986.	5.5	143
36	Improved mechanical properties of Ni-rich Ni3Al coatings produced by EB-PVD for repairing single crystal blades. Rare Metals, 2017, 36, 556-561.	7.1	7

#	Article	IF	CITATIONS
37	Oxidation behavior of Nb–24Ti–18Si–2Al–2Hf–4Cr and Nb–24Ti–18Si–2Al–2Hf–8Cr hypere alloys at 1250°C. Rare Metals, 2017, 36, 168-173.	utectic 7.1	11
38	Evolution of microstructure and mechanical properties of A356 aluminium alloy processed by hot spinning process. China Foundry, 2017, 14, 138-144.	1.4	9
39	Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy. Scripta Materialia, 2017, 134, 6-10.	5.2	324
40	Selective laser melting of Al7050 powder: Melting mode transition and comparison of the characteristics between the keyhole and conduction mode. Materials and Design, 2017, 135, 257-266.	7.0	237
41	Fracture Mode Transition in Nb–1Si Alloys Triggered by Annealing Heat Treatment. Advanced Engineering Materials, 2017, 19, 1700442.	3.5	7
42	Effect of Open Porosity of Y2O3 Ceramic on the Apparent Contact Angles and Interactions Between Ti47Al Alloys and Y2O3 Ceramic. Acta Metallurgica Sinica (English Letters), 2017, 30, 456-463.	2.9	4
43	Experimental investigation on selective laser melting of 17-4PH stainless steel. Optics and Laser Technology, 2017, 87, 17-25.	4.6	173
44	Fabrication and heat treatment of high strength Al-Cu-Mg alloy processed using selective laser melting. Proceedings of SPIE, 2016, , .	0.8	8
45	Cooling Rate Sensitivity of RE-Containing Grain Refiner and Its Impact on the Microstructure and Mechanical Properties of A356 Alloy. Acta Metallurgica Sinica (English Letters), 2016, 29, 414-421.	2.9	8
46	Selective laser melting of high strength Al–Cu–Mg alloys: Processing, microstructure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 656, 47-54.	5.6	399
47	A finite element model of thermal evolution in laser micro sintering. International Journal of Advanced Manufacturing Technology, 2016, 83, 1847-1859.	3.0	55
48	Characterization of Al–Fe–V–Si heat-resistant aluminum alloy components fabricated by selective laser melting. Journal of Materials Research, 2015, 30, 1661-1669.	2.6	28
49	Microstructural refinement and enhanced mechanical properties of suction-cast NiTi-Al alloy for structural use. Rare Metals, 2015, , 1.	7.1	2
50	Selective laser melting of Al-Fe-V-Si heat-resistant aluminum alloy powder: modeling and experiments. International Journal of Advanced Manufacturing Technology, 2015, 80, 1787-1797.	3.0	28
51	Microstructure Evolution in Nb-12Si-22Ti-14Cr-2Al2Hf Alloy Fabricated by Directional Solidification. High Temperature Materials and Processes, 2014, 33, 495-498.	1.4	4
52	Microstructural characterization in 7 at% Al-containing NiTi-based alloys. Rare Metals, 2014, 33, 534-540.	7.1	4
53	Microstructural Evolution and Mechanical Behaviors of an Nb-16Si-22Ti-2Al-2Hf Alloy with 2 and 17Âat.Âpct Cr Additions at Room and/or High Temperatures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4842-4850.	2.2	16
54	Microstructure evolution of directionally solidified Ni–43Ti–7Al alloy during heat treatment. Journal of Materials Science, 2013, 48, 2176-2187.	3.7	4

#	Article	lF	Citations
55	Microstructure and Mechanical Property Optimization of NiTiAl-based Alloys: Directional Solidification in Novel Ceramic Crucibles. High Temperature Materials and Processes, 2013, 32, 353-358.	1.4	2
56	Effect of Heat Treatments on Phase Transformation and Tensile Properties in Cast Ti-47Al-2Cr-2Nb Alloy. High Temperature Materials and Processes, 2012, 31, .	1.4	0
57	High temperature tensile properties of directionally solidified Ni-43Ti-4Al-2Nb-2Hf alloy. Rare Metals, 2012, 31, 328-331.	7.1	9
58	Microstructural evolution of a PM TiAl alloy during heat treatment in $\hat{l}_{\pm}+\hat{l}_{3}$ phase field. Rare Metals, 2012, 31, 424-429.	7.1	4
59	Microstructural characteristics of directionally solidified Ni-43Ti-4Al-2Nb-2Hf alloy. Rare Metals, 2011, 30, 340-344.	7.1	6
60	Effect of casting temperature on microstructure in a directionally solidified Ni-44Ti-5Al-2Nb-1Mo alloy. Rare Metals, 2011, 30, 349-353.	7.1	7
61	Microstructure evolution of Ti-47Al-2Cr-2Nb alloy in the liquid-metal-cooling (LMC) directional-solidification process. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 197-201.	1.0	6