Xiuling Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11289767/publications.pdf

Version: 2024-02-01

		304743	454955
30	1,232	22	30
papers	citations	h-index	g-index
31	31	31	1963
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dual-mechanistic antibody-drug conjugate via site-specific selenocysteine/cysteine conjugation. Antibody Therapeutics, 2019, 2, 71-78.	1.9	35
2	Comparative study of semiconductor TiO ₂ and noble metal Ag substrates: The differences between chemical enhancement and electromagnetic enhancement in SERS. Journal of Raman Spectroscopy, 2018, 49, 1257-1264.	2.5	34
3	SERS strategy based on the modified Au nanoparticles for highly sensitive detection of bisphenol A residues in milk. Talanta, 2018, 179, 37-42.	5.5	53
4	A Sortase A Programmable Phage Display Format for Improved Panning of Fab Antibody Libraries. Journal of Molecular Biology, 2018, 430, 4387-4400.	4.2	4
5	Potent and selective antitumor activity of a T cell-engaging bispecific antibody targeting a membrane-proximal epitope of ROR1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5467-E5476.	7.1	60
6	SERS investigation and high sensitive detection of carbenicillin disodium drug on the Ag substrate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 204, 241-247.	3.9	17
7	High sensitive detection of penicillin G residues in milk by surface-enhanced Raman scattering. Talanta, 2017, 167, 236-241.	5.5	61
8	Double Metal Co-Doping of TiO ₂ Nanoparticles for Improvement of their SERS Activity and Ultrasensitive Detection of Enrofloxacin: Regulation Strategy of Energy Levels. ChemistrySelect, 2017, 2, 3099-3105.	1.5	17
9	Stable and Potent Selenomab-Drug Conjugates. Cell Chemical Biology, 2017, 24, 433-442.e6.	5.2	35
10	Harnessing a catalytic lysine residue for the one-step preparation of homogeneous antibody-drug conjugates. Nature Communications, 2017, 8, 1112.	12.8	71
11	Mining Na \tilde{A} -ve Rabbit Antibody Repertoires by Phage Display for Monoclonal Antibodies of Therapeutic Utility. Journal of Molecular Biology, 2017, 429, 2954-2973.	4.2	47
12	Clinical development of a poly(2-oxazoline) (POZ) polymer therapeutic for the treatment of Parkinson $\hat{a} \in \mathbb{N}$ disease $\hat{a} \in \mathbb{N}$ Proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. European Polymer Journal, 2017, 88, 524-552.	5.4	124
13	Utilization of Selenocysteine for Site-Specific Antibody Conjugation. Methods in Molecular Biology, 2017, 1575, 145-164.	0.9	5
14	Strain Prioritization and Genome Mining for Enediyne Natural Products. MBio, 2016, 7, .	4.1	89
15	Assessment of reagents for selenocysteine conjugation and the stability of selenocysteine adducts. Organic and Biomolecular Chemistry, 2016, 14, 5141-5147.	2.8	24
16	Engineered production of cancer targeting peptide (CTP)-containing C-1027 in Streptomyces globisporus and biological evaluation. Bioorganic and Medicinal Chemistry, 2016, 24, 3887-3892.	3.0	7
17	Site-Specific Dual Antibody Conjugation via Engineered Cysteine and Selenocysteine Residues. Bioconjugate Chemistry, 2015, 26, 2243-2248.	3 . 6	47
18	Anatase TiO ₂ nanoparticles with controllable crystallinity as a substrate for SERS: improved charge-transfer contribution. RSC Advances, 2015, 5, 80269-80275.	3.6	23

#	Article	IF	CITATIONS
19	Angucyclines and Angucyclinones from <i>Streptomyces</i> sp. CB01913 Featuring C-Ring Cleavage and Expansion. Journal of Natural Products, 2015, 78, 2471-2480.	3.0	41
20	Thromboxane A ₂ receptor-mediated release of matrix metalloproteinase-1 (MMP-1) induces expression of monocyte chemoattractant protein-1 (MCP-1) by activation of protease-activated receptor 2 (PAR2) in A549 human lung adenocarcinoma cells. Molecular Carcinogenesis, 2014, 53, 659-666.	2.7	30
21	Antibody conjugation via one and two C-terminal selenocysteines. Methods, 2014, 65, 133-138.	3.8	39
22	Improving the Serum Stability of Site-Specific Antibody Conjugates with Sulfone Linkers. Bioconjugate Chemistry, 2014, 25, 1402-1407.	3.6	79
23	Improving surface-enhanced Raman scattering properties of TiO2 nanoparticles by metal Co doping. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 123, 224-229.	3.9	23
24	Activation of Thromboxane A2 Receptor (TP) Increases the Expression of Monocyte Chemoattractant Protein -1 (MCP-1)/Chemokine (C-C motif) Ligand 2 (CCL2) and Recruits Macrophages to Promote Invasion of Lung Cancer Cells. PLoS ONE, 2013, 8, e54073.	2.5	41
25	Increased Expression of Matrix Metalloproteinases Mediates Thromboxane A2-Induced Invasion in Lung Cancer Cells. Current Cancer Drug Targets, 2012, 12, 703-715.	1.6	15
26	Surface-Enhanced Raman Scattering from Synergistic Contribution of Metal and Semiconductor in TiO ₂ /MBA/Ag(Au) and Ag(Au)/MBA/TiO ₂ Assemblies. Journal of Physical Chemistry C, 2012, 116, 14650-14655.	3.1	78
27	Thromboxane receptor $\hat{l}\pm$ mediates tumor growth and angiogenesis via induction of vascular endothelial growth factor expression in human lung cancer cells. Lung Cancer, 2010, 69, 26-32.	2.0	41
28	Activation of thromboxane A2 receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells. Carcinogenesis, 2009, 30, 1606-1613.	2.8	55
29	Activation of extracellular signal-regulated kinase by 12-hydroxyheptadecatrienoic acid in prostate cancer PC3 cells. Archives of Biochemistry and Biophysics, 2007, 467, 20-30.	3.0	11
30	Activation of thromboxane receptor \hat{l}_{\pm} induces expression of cyclooxygenase-2 through multiple signaling pathways in A549 human lung adenocarcinoma cells. Biochemical Pharmacology, 2007, 74, 787-800.	4.4	26