Christopher V Carman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1128930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unexpected enhancement of FVIII immunogenicity by endothelial expression in lentivirus-transduced and transgenic mice. Blood Advances, 2020, 4, 2272-2285.	2.5	3
2	Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier <i>via</i> Transcytosis. ACS Nano, 2019, 13, 13853-13865.	7.3	326
3	Edible Mushrooms Reduce Atherosclerosis in Ldlrâ^'/â^' Mice Fed a High-Fat Diet. Journal of Nutrition, 2019, 149, 1377-1384.	1.3	11
4	The tumor suppressor p53 can promote collective cellular migration. PLoS ONE, 2019, 14, e0202065.	1.1	12
5	Lymphocyte–Endothelial Interactions. , 2016, , 632-649.		3
6	An Endothelial Planar Cell Model for Imaging Immunological Synapse Dynamics. Journal of Visualized Experiments, 2015, , e53288.	0.2	15
7	T Lymphocyte–Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity. Frontiers in Immunology, 2015, 6, 603.	2.2	156
8	Intravital Imaging of Mesenchymal Stem Cell Trafficking and Association With Platelets and Neutrophils. Stem Cells, 2015, 33, 265-277.	1.4	63
9	Actin foci facilitate activation of the phospholipase C-Î ³ in primary T lymphocytes via the WASP pathway. ELife, 2015, 4, .	2.8	200
10	Vascular Endothelia Mechanically Sense Barrier Quality and Maintain Functional Integrity through ROSâ€Dependent Actin Remodeling. FASEB Journal, 2015, 29, 85.4.	0.2	0
11	Central role for hydrogen peroxide in P2Y1 ADP receptor-mediated cellular responses in vascular endothelium. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3383-3388.	3.3	22
12	Probing the biomechanical contribution of the endothelium to lymphocyte migration: diapedesis by the path of least resistance. Journal of Cell Science, 2014, 127, 3720-34.	1.2	98
13	Role of BRAFV600E in the First Preclinical Model of Multifocal Infiltrating Myopericytoma Development and Microenvironment. Journal of the National Cancer Institute, 2014, 106, .	3.0	31
14	Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults. Critical Care, 2014, 18, 204.	2.5	125
15	The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nature Immunology, 2013, 14, 152-161.	7.0	428
16	Glassy Dynamics, Cell Mechanics, and Endothelial Permeability. Journal of Physical Chemistry B, 2013, 117, 12850-12856.	1.2	23
17	Release of cellular tension signals self-restorative ventral lamellipodia to heal barrier micro-wounds. Journal of Cell Biology, 2013, 201, 449-465.	2.3	78
18	Novel Role of CD47 in Rat Microvascular Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2566-2576.	1.1	24

#	Article	IF	CITATIONS
19	ETS-related Gene (ERG) Controls Endothelial Cell Permeability via Transcriptional Regulation of the Claudin 5 (CLDN5) Gene. Journal of Biological Chemistry, 2012, 287, 6582-6591.	1.6	82
20	Mesenchymal Stem Cells Transmigrate Between and Directly Through Tumor Necrosis Factorâ€Î±â€Activated Endothelial Cells Via Both Leukocyte‣ike and Novel Mechanisms. Stem Cells, 2012, 30, 2472-2486.	1.4	162
21	Antigen Recognition Is Facilitated by Invadosome-like Protrusions Formed by Memory/Effector T Cells. Journal of Immunology, 2012, 188, 3686-3699.	0.4	154
22	Overview: Imaging in the Study of Integrins. Methods in Molecular Biology, 2011, 757, 159-189.	0.4	12
23	Cellular and extracellular programming of cell fate through engineered intracrine-, paracrine-, and endocrine-like mechanisms. Biomaterials, 2011, 32, 3053-3061.	5.7	66
24	Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces. American Journal of Physiology - Cell Physiology, 2011, 300, C146-C154.	2.1	205
25	High-Resolution Fluorescence Microscopy to Study Transendothelial Migration. Methods in Molecular Biology, 2011, 757, 215-245.	0.4	1
26	New observations on the trafficking and diapedesis of monocytes. Current Opinion in Hematology, 2010, 17, 43-52.	1.2	74
27	Distinct roles for LFA-1 affinity regulation during T-cell adhesion, diapedesis, and interstitial migration in lymph nodes. Blood, 2010, 115, 1572-1581.	0.6	91
28	Cdc42 interacting protein 4 (CIP4) is essential for integrin-dependent T-cell trafficking. Proceedings of the United States of America, 2010, 107, 16252-16256.	3.3	23
29	Settings and mechanisms for trans-cellular diapedesis. Frontiers in Bioscience - Landmark, 2009, 14, 5066.	3.0	62
30	Antiinflammatory Effects of the ETS Factor ERG in Endothelial Cells Are Mediated Through Transcriptional Repression of the Interleukin-8 Gene. Circulation Research, 2009, 104, 1049-1057.	2.0	77
31	Chapter 10 Transmigratory Cups and Invadosome-Like Protrusions. Current Topics in Membranes, 2009, 64, 297-333.	0.5	3
32	ERG is required for the differentiation of embryonic stem cells along the endothelial lineage. BMC Developmental Biology, 2009, 9, 72.	2.1	54
33	Mechanisms for transcellular diapedesis: probing and pathfinding by `invadosome-like protrusions'. Journal of Cell Science, 2009, 122, 3025-3035.	1.2	167
34	Trans-cellular migration: cell–cell contacts get intimate. Current Opinion in Cell Biology, 2008, 20, 533-540.	2.6	163
35	Systemic Leukocyte-Directed siRNA Delivery Revealing Cyclin D1 as an Anti-Inflammatory Target. Science, 2008, 319, 627-630.	6.0	475
36	Regulation of T Cell Receptor Activation by Dynamic Membrane Binding of the CD3É› Cytoplasmic Tyrosine-Based Motif. Cell, 2008, 135, 702-713.	13.5	391

#	Article	IF	CITATIONS
37	Genetic perturbation of the putative cytoplasmic membrane-proximal salt bridge aberrantly activates $\hat{l}\pm4$ integrins. Blood, 2008, 112, 5007-5015.	0.6	31
38	Teasing out monocyte trafficking mechanisms. Blood, 2008, 112, 929-930.	0.6	3
39	Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4095-4100.	3.3	262
40	Structural plasticity in Ig superfamily domain 4 of ICAM-1 mediates cell surface dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15358-15363.	3.3	35
41	Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14753-14758.	3.3	83
42	Active Rap1, a small GTPase that induces malignant transformation of hematopoietic progenitors, localizes in the nucleus and regulates protein expression. Leukemia and Lymphoma, 2007, 48, 987-1002.	0.6	12
43	Requirement of α and β subunit transmembrane helix separation for integrin outside-in signaling. Blood, 2007, 110, 2475-2483.	0.6	108
44	Transcellular Diapedesis Is Initiated by Invasive Podosomes. Immunity, 2007, 26, 784-797.	6.6	440
45	Structural Basis of Integrin Regulation and Signaling. Annual Review of Immunology, 2007, 25, 619-647.	9.5	1,438
46	Aberrant activation of integrin $\hat{l}\pm4\hat{l}^27$ suppresses lymphocyte migration to the gut. Journal of Clinical Investigation, 2007, 117, 2526-2538.	3.9	65
47	A Small Molecule Agonist of an Integrin, αLβ2. Journal of Biological Chemistry, 2006, 281, 37904-37912.	1.6	36
48	Regulation of outside-in signaling and affinity by the beta2 I domain of integrin ÂLbeta2. Proceedings of the United States of America, 2006, 103, 13062-13067.	3.3	57
49	Directed evolution to probe protein allostery and integrin I domains of 200,000-fold higher affinity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5758-5763.	3.3	74
50	Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin ÂXÂ2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1614-1619.	3.3	91
51	Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3679-3684.	3.3	136
52	A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. Journal of Cell Biology, 2004, 167, 377-388.	2.3	573
53	The primacy of affinity over clustering in regulation of adhesiveness of the integrin αLβ2. Journal of Cell Biology, 2004, 167, 1241-1253.	2.3	221
54	RIAM, an Ena/VASP and Profilin Ligand, Interacts with Rap1-GTP and Mediates Rap1-Induced Adhesion. Developmental Cell, 2004, 7, 585-595.	3.1	382

CHRISTOPHER V CARMAN

#	Article	IF	CITATIONS
55	RIAM, a New Rap1 Effector, Functions Downstream of Rap1 and Regulates Rap1 Localization at the Plasma Membrane and Rap1-Induced Adhesion Blood, 2004, 104, 510-510.	0.6	Ο
56	Integrin avidity regulation: are changes in affinity and conformation underemphasized?. Current Opinion in Cell Biology, 2003, 15, 547-556.	2.6	481
57	Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature, 2003, 424, 561-565.	13.7	731
58	Differential Interaction of GRK2 with Members of the GαqFamilyâ€. Biochemistry, 2003, 42, 9176-9184.	1.2	64
59	Endothelial Cells Proactively Form Microvilli-Like Membrane Projections upon Intercellular Adhesion Molecule 1 Engagement of Leukocyte LFA-1. Journal of Immunology, 2003, 171, 6135-6144.	0.4	197
60	Bidirectional Transmembrane Signaling by Cytoplasmic Domain Separation in Integrins. Science, 2003, 301, 1720-1725.	6.0	714
61	Activation-induced Conformational Changes in the I Domain Region of Lymphocyte Function-associated Antigen 1. Journal of Biological Chemistry, 2002, 277, 10638-10641.	1.6	46
62	Transition From Rolling to Firm Adhesion Is Regulated by the Conformation of the I Domain of the Integrin Lymphocyte Function-associated Antigen-1. Journal of Biological Chemistry, 2002, 277, 50255-50262.	1.6	90
63	Ultrastructure and Function of Dimeric, Soluble Intercellular Adhesion Molecule-1 (ICAM-1). Journal of Biological Chemistry, 2001, 276, 29019-29027.	1.6	62
64	Dimerization and the effectiveness of ICAM-1 in mediating LFA-1-dependent adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6830-6835.	3.3	65
65	Mutational Analysis of GÎ ² Î ³ and Phospholipid Interaction with G Protein-coupled Receptor Kinase 2. Journal of Biological Chemistry, 2000, 275, 10443-10452.	1.6	103
66	Regulation of G Protein-coupled Receptor Kinases by Caveolin. Journal of Biological Chemistry, 1999, 274, 8858-8864.	1.6	158
67	Selective Regulation of Gαq/11 by an RGS Domain in the G Protein-coupled Receptor Kinase, GRK2. Journal of Biological Chemistry, 1999, 274, 34483-34492.	1.6	286
68	G-protein-coupled receptors: turn-ons and turn-offs. Current Opinion in Neurobiology, 1998, 8, 335-344.	2.0	267
69	Binding and Phosphorylation of Tubulin by G Protein-coupled Receptor Kinases. Journal of Biological Chemistry, 1998, 273, 20308-20316.	1.6	119
70	Structure-Function Analysis of G Protein-coupled Receptor Kinase-5. Journal of Biological Chemistry, 1998, 273, 31510-31518.	1.6	66
71	The Endothelial Cytoskeleton. , 0, , 696-706.		1
72	Conformational activation of 2 integrins, their I domains, and regulation by small molecule		0

antagonists., 0,,.