List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11289291/publications.pdf Version: 2024-02-01



| #  | ARTICLE                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The Use of Surface Electromyography in Biomechanics. Journal of Applied Biomechanics, 1997, 13, 135-163.                                                                                                             | 0.3 | 2,182     |
| 2  | Filtering the surface EMG signal: Movement artifact and baseline noise contamination. Journal of Biomechanics, 2010, 43, 1573-1579.                                                                                  | 0.9 | 892       |
| 3  | Physiology and Mathematics of Myoelectric Signals. IEEE Transactions on Biomedical Engineering, 1979, BME-26, 313-325.                                                                                               | 2.5 | 546       |
| 4  | Frequency Parameters of the Myoelectric Signal as a Measure of Muscle Conduction Velocity. IEEE<br>Transactions on Biomedical Engineering, 1981, BME-28, 515-523.                                                    | 2.5 | 466       |
| 5  | Lumbar Muscle Fatigue and Chronic Lower Back Pain. Spine, 1989, 14, 992-1001.                                                                                                                                        | 1.0 | 407       |
| 6  | Common drive of motor units in regulation of muscle force. Trends in Neurosciences, 1994, 17, 299-305.                                                                                                               | 4.2 | 397       |
| 7  | Decomposition of Surface EMG Signals. Journal of Neurophysiology, 2006, 96, 1646-1657.                                                                                                                               | 0.9 | 383       |
| 8  | The role of plantar cutaneous sensation in unperturbed stance. Experimental Brain Research, 2004,<br>156, 505-512.                                                                                                   | 0.7 | 336       |
| 9  | High-yield decomposition of surface EMG signals. Clinical Neurophysiology, 2010, 121, 1602-1615.                                                                                                                     | 0.7 | 299       |
| 10 | Surface myoelectric signal cross-talk among muscles of the leg. Electroencephalography and Clinical Neurophysiology, 1988, 69, 568-575.                                                                              | 0.3 | 280       |
| 11 | A Procedure for Decomposing the Myoelectric Signal Into Its Constituent Action Potentials - Part I:<br>Technique, Theory, and Implementation. IEEE Transactions on Biomedical Engineering, 1982, BME-29,<br>149-157. | 2.5 | 259       |
| 12 | Relationship Between Firing Rate and Recruitment Threshold of Motoneurons in Voluntary Isometric<br>Contractions. Journal of Neurophysiology, 2010, 104, 1034-1046.                                                  | 0.9 | 234       |
| 13 | Use of the surface EMG signal for performance evaluation of back muscles. Muscle and Nerve, 1993, 16, 210-216.                                                                                                       | 1.0 | 220       |
| 14 | Effects of Aging on Motor-Unit Control Properties. Journal of Neurophysiology, 1999, 82, 2081-2091.                                                                                                                  | 0.9 | 210       |
| 15 | Firing rates of motor units in human vastus lateralis muscle during fatiguing isometric contractions.<br>Journal of Applied Physiology, 2005, 99, 268-280.                                                           | 1.2 | 167       |
| 16 | Hierarchical control of motor units in voluntary contractions. Journal of Neurophysiology, 2012, 107, 178-195.                                                                                                       | 0.9 | 167       |
| 17 | Inter-electrode spacing of surface EMG sensors: Reduction of crosstalk contamination during voluntary contractions. Journal of Biomechanics, 2012, 45, 555-561.                                                      | 0.9 | 153       |
|    |                                                                                                                                                                                                                      |     |           |

Rank-ordered regulation of motor units. , 1996, 19, 563-573.

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A technique for the detection, decomposition and analysis of the EMG signal. Electroencephalography<br>and Clinical Neurophysiology, 1984, 58, 175-188.                                                    | 0.3 | 144       |
| 20 | Common Drive in Motor Units of a Synergistic Muscle Pair. Journal of Neurophysiology, 2002, 87, 2200-2204.                                                                                                 | 0.9 | 143       |
| 21 | Hand Dominance and Motor Unit Firing Behavior. Journal of Neurophysiology, 1998, 80, 1373-1382.                                                                                                            | 0.9 | 140       |
| 22 | Recruitment Order of Motor Units in Human Vastus Lateralis Muscle Is Maintained During Fatiguing<br>Contractions. Journal of Neurophysiology, 2003, 90, 2919-2927.                                         | 0.9 | 139       |
| 23 | Spectral Electromyographic Assessment of Back Muscles in Patients With Low Back Muscles in<br>Patients With Low Back Pain Undergoing Rehabilitation. Spine, 1995, 20, 38-48.                               | 1.0 | 132       |
| 24 | Median frequency of the myoelectric signal. European Journal of Applied Physiology and Occupational<br>Physiology, 1984, 52, 258-265.                                                                      | 1.2 | 130       |
| 25 | Reduced plantar sensitivity alters postural responses to lateral perturbations of balance.<br>Experimental Brain Research, 2004, 157, 526-536.                                                             | 0.7 | 127       |
| 26 | A Procedure for Decomposing the Myoelectric Signal Into Its Constituent Action Potentials-Part II:<br>Execution and Test for Accuracy. IEEE Transactions on Biomedical Engineering, 1982, BME-29, 158-164. | 2.5 | 123       |
| 27 | A Note on the Noninvasive Estimation of Muscle Fiber Conduction Velocity. IEEE Transactions on<br>Biomedical Engineering, 1985, BME-32, 341-344.                                                           | 2.5 | 120       |
| 28 | Activation imbalances in lumbar spine muscles in the presence of chronic low back pain. Journal of Applied Physiology, 2003, 94, 1410-1420.                                                                | 1.2 | 117       |
| 29 | Motor unit control and force fluctuation during fatigue. Journal of Applied Physiology, 2009, 107, 235-243.                                                                                                | 1.2 | 112       |
| 30 | A Combined sEMG and Accelerometer System for Monitoring Functional Activity in Stroke. IEEE<br>Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17, 585-594.                           | 2.7 | 111       |
| 31 | Fatigue, recovery, and low back pain in varsity rowers. Medicine and Science in Sports and Exercise, 1990, 22, 463???469.                                                                                  | 0.2 | 103       |
| 32 | Decomposition of surface EMG signals from cyclic dynamic contractions. Journal of Neurophysiology, 2015, 113, 1941-1951.                                                                                   | 0.9 | 88        |
| 33 | Muscle Fatigue Monitor: A Noninvasive Device for Observing Localized Muscular Fatigue. IEEE<br>Transactions on Biomedical Engineering, 1982, BME-29, 760-768.                                              | 2.5 | 84        |
| 34 | Dynamical Learning and Tracking of Tremor and Dyskinesia From Wearable Sensors. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 982-991.                                     | 2.7 | 82        |
| 35 | The compensatory interaction between motor unit firing behavior and muscle force during fatigue.<br>Journal of Neurophysiology, 2016, 116, 1579-1585.                                                      | 0.9 | 75        |
| 36 | Decomposition of indwelling EMG signals. Journal of Applied Physiology, 2008, 105, 700-710.                                                                                                                | 1.2 | 74        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Neural control of muscle force: indications from a simulation model. Journal of Neurophysiology, 2013, 109, 1548-1570.                                                                           | 0.9 | 74        |
| 38 | Biomechanical benefits of the onion-skin motor unit control scheme. Journal of Biomechanics, 2015, 48, 195-203.                                                                                  | 0.9 | 70        |
| 39 | Recruitment threshold and muscle fiber conduction velocity of single motor units. Journal of Electromyography and Kinesiology, 1991, 1, 116-123.                                                 | 0.7 | 67        |
| 40 | Median frequency of the myoelectric signal. European Journal of Applied Physiology and Occupational Physiology, 1986, 55, 457-464.                                                               | 1.2 | 63        |
| 41 | Highâ€resolution tracking of motor disorders in Parkinson's disease during unconstrained activity.<br>Movement Disorders, 2013, 28, 1080-1087.                                                   | 2.2 | 55        |
| 42 | Preferred sensor sites for surface EMG signal decomposition. Physiological Measurement, 2012, 33, 195-206.                                                                                       | 1.2 | 53        |
| 43 | Motor unit recruitment and firing rates interaction in the control of human muscles. Brain<br>Research, 1985, 337, 311-319.                                                                      | 1.1 | 52        |
| 44 | Electromyographic analysis of standing posture and demi-plie in ballet and modern dancers. Medicine and Science in Sports and Exercise, 1994, 26, 771-782.                                       | 0.2 | 51        |
| 45 | Unusual motor unit firing behavior in older adults. Brain Research, 1989, 482, 136-140.                                                                                                          | 1.1 | 44        |
| 46 | Motor Unit Recruitment and Proprioceptive Feedback Decrease the Common Drive. Journal of Neurophysiology, 2009, 101, 1620-1628.                                                                  | 0.9 | 44        |
| 47 | An Electrode for Recording Single Motor Unit Activity During Strong Muscle Contractions. IEEE Transactions on Biomedical Engineering, 1972, BME-19, 367-372.                                     | 2.5 | 42        |
| 48 | The relation between the myoelectric signal and physiological properties of constant-force isometric contractions. Electroencephalography and Clinical Neurophysiology, 1978, 45, 681-698.       | 0.3 | 41        |
| 49 | Muscle Fatigue Monitor (MFM): Second Generation. IEEE Transactions on Biomedical Engineering, 1985,<br>BME-32, 75-78.                                                                            | 2.5 | 37        |
| 50 | Firing Rate Interactions Among Human Orbicularis Oris Motor Units. International Journal of Neuroscience, 1992, 64, 167-175.                                                                     | 0.8 | 36        |
| 51 | Reply to Farina and Enoka: The Reconstruct-and-Test Approach Is the Most Appropriate Validation for<br>Surface EMG Signal Decomposition to Date. Journal of Neurophysiology, 2011, 105, 983-984. | 0.9 | 36        |
| 52 | Electromyographic analysis of grand-pli?? in ballet and modern dancers. Medicine and Science in Sports and Exercise, 1998, 30, 1708-1720.                                                        | 0.2 | 31        |
| 53 | Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs. Journal of Neurophysiology, 2016, 115, 178-192.                                        | 0.9 | 29        |
| 54 | Control of upper-limb prostheses. Journal of Medical Engineering and Technology, 1978, 2, 57-61.                                                                                                 | 0.8 | 28        |

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A model for a motor unit train recorded during constant force isometric contractions. Biological<br>Cybernetics, 1975, 19, 159-167.                                          | 0.6 | 27        |
| 56 | Lateral dominance and motor unit firing behavior. Brain Research, 1992, 576, 165-167.                                                                                        | 1.1 | 27        |
| 57 | Error reduction in EMG signal decomposition. Journal of Neurophysiology, 2014, 112, 2718-2728.                                                                               | 0.9 | 24        |
| 58 | Transposed firing activation of motor units. Journal of Neurophysiology, 2014, 112, 962-970.                                                                                 | 0.9 | 21        |
| 59 | Clarification of methods used to validate surface EMG decomposition algorithms as described by<br>Farina et al. (2014). Journal of Applied Physiology, 2015, 118, 1084-1084. | 1.2 | 21        |
| 60 | Multiple Motor Unit Recordings of Laryngeal Muscles: The Technique of Vector Laryngeal<br>Electromyography. Laryngoscope, 2002, 112, 2196-2203.                              | 1.1 | 17        |
| 61 | Ordered Motor-Unit Firing Behavior in Acute Cerebellar Stroke. Journal of Neurophysiology, 2006, 96, 2769-2774.                                                              | 0.9 | 17        |
| 62 | ls the notion of central fatigue based on a solid foundation?. Journal of Neurophysiology, 2016, 115, 967-977.                                                               | 0.9 | 16        |
| 63 | Technique for detecting MUAP propagation from high-threshold motor units. Journal of Electromyography and Kinesiology, 1991, 1, 75-80.                                       | 0.7 | 14        |
| 64 | Compression Induced Damage on In-Situ Severed and Intact Nerves. Orthopedics, 1987, 10, 777-784.                                                                             | 0.5 | 14        |
| 65 | Statistically rigorous calculations do not support common input and long-term synchronization of motor-unit firings. Journal of Neurophysiology, 2014, 112, 2729-2744.       | 0.9 | 13        |
| 66 | Decomposition and Analysis of Intramuscular Electromyographic Signals. , 1999, , 757-776.                                                                                    |     | 13        |
| 67 | Improved resolution of pulse superpositions in a knowledge-based system EMG decomposition. , 2004, 2006, 69-71.                                                              |     | 12        |
| 68 | Aliasing rejection in Precision Decomposition of EMG signals. , 2008, 2008, 4972-5.                                                                                          |     | 11        |
| 69 | A simulation study for a surface EMG sensor that detects distinguishable motor unit action potentials. Journal of Neuroscience Methods, 2008, 168, 54-63.                    | 1.3 | 9         |
| 70 | Multi-Receiver Precision Decomposition of Intramuscular EMG Signals. , 2006, 2006, 1252-5.                                                                                   |     | 7         |
| 71 | Surface EMG signal decomposition using empirically sustainable biosignal separation principles. , 2009, 2009, 4986-9.                                                        |     | 5         |
| 72 | Multi-Receiver Precision Decomposition of Intramuscular EMG Signals. Annual International<br>Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .   | 0.5 | 2         |

| #  | Article                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Letters to the editor. Muscle and Nerve, 1995, 18, 1490-1497.                                                     | 1.0 | 1         |
| 74 | The common input notion, conceived and sustained by conjecture. Journal of Neurophysiology, 2016, 115, 1079-1080. | 0.9 | 1         |