Roman Vershynin

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/11287692/publications.pdf
Version: 2024-02-01

| 36 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| papers |
| all docs |

1 The smallest singular value of inhomogeneous square random matrices. Annals of Probability, 2021, 1.8 14
49, .
5.9 32 A theory of capacity and sparse neural encoding. Neural Networks, 2021, 143, 12-27.
3 The capacity of feedforward neural networks. Neural Networks, 2019, 116, 288-311. 5.9 39
Phase retrieval via randomized Kaczmarz: theoretical guarantees. Information and Inference, 2019, 8, 1.6 37
$4 \quad \begin{aligned} & \text { Phase re } \\ & 97-123 .\end{aligned}$
$5 \quad$ Concentration and regularization of random graphs. Random Structures and Algorithms, 2017, 51, 1.1 60
6 A Simple Tool for Bounding the Deviation of Random Matrices on Geometric Sets. Lecture Notes in Mathematics, 2017, , 277-299.0.230
7 No-gaps delocalization for general random matrices. Geometric and Functional Analysis, 2016, 26, 1716-1776. 1.8 368 Community detection in sparse networks via Grothendieckâ $€^{T M} s$ inequality. Probability Theory and Related8 Fields, 2016, 165, 1025-1049.
9 The Generalized Lasso With Non-Linear Observations. IEEE Transactions on Information Theory, 2016, 9 62, 1528-1537. 2.4 991.876
Estimation in High Dimensions: A Geometric Perspective. Applied and Numerical Harmonic Analysis,
Estimation in High Dimensions: A Geometric Perspective. Applied and Numerical Harmonic Analysis,
10 2015, , 3-66.
10 2015, , 3-66. 0.3 0.3 33 33
11 On the Effective Measure of Dimension in the Analysis Cosparse Model. IEEE Transactions on Information Theory, 2015, 61, 5745-5753.
12 Invertibility of symmetric random matrices. Random Structures and Algorithms, 2014, 44, 135-182.1.170
Dimension Reduction by Random Hyperplane Tessellations. Discrete and Computational Geometry, 2014,
Dimension Reduction by Random Hyperplane Tessellations. Discrete and Computational Geometry, 2014,
51, 438-461.
51, 438-461. 0.6 0.6 67 67
2.48Oneâ€Bit Compressed Sensing by Linear Programming. Communications on Pure and Applied Mathematics,

19	Approximating the moments of marginals of high-dimensional distributions. Annals of Probability, 2011, 39, .	1.8	9
20	Spectral norm of products of random and deterministic matrices. Probability Theory and Related Fields, 2011, 150, 471-509.	1.8	33
21	Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit. IEEE Journal on Selected Topics in Signal Processing, 2010, 4, 310-316.	10.8	663
22	Uncertainty Principles and Vector Quantization. IEEE Transactions on Information Theory, 2010, 56, 3491-3501.	2.4	42
23	Smallest singular value of a random rectangular matrix. Communications on Pure and Applied Mathematics, 2009, 62, 1707-1739.	3.1	177
24	Uniform Uncertainty Principle and Signal Recovery viaÂRegularized Orthogonal Matching Pursuit. Foundations of Computational Mathematics, 2009, 9, 317-334.	2.5	732
25	A Randomized Kaczmarz Algorithm with Exponential Convergence. Journal of Fourier Analysis and Applications, 2009, 15, 262-278.	1.0	500
26	Comments on the Randomized Kaczmarz Method. Journal of Fourier Analysis and Applications, 2009, 15, 437-440.	1.0	27
27	On the role of sparsity in Compressed Sensing and random matrix theory. , 2009, ,		4
28	On sparse reconstruction from Fourier and Gaussian measurements. Communications on Pure and Applied Mathematics, 2008, 61, 1025-1045.	3.1	568
29	Greedy signal recovery review. , 2008,		58
30	Sampling from large matrices. Journal of the ACM, 2007, 54, 21.	2.2	176
31	Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements. , 2006, ,		144

32 Beyond Hirsch Conjecture: Walks on Random Polytopes and Smoothed Complexity of the Simplex

33 Isoperimetry of waists and local versus global asymptotic convex geometries. Duke Mathematical Journal, 2006, 131, 1.

