Leopold Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11286179/publications.pdf

Version: 2024-02-01

159358 414034 3,608 33 30 citations h-index papers

32 g-index 36 36 36 4184 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genetic and structural insights into broad neutralization of hepatitis C virus by human V _H 1-69 antibodies. Science Advances, 2019, 5, eaav1882.	4.7	77
2	Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7569-7574.	3.3	14
3	Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature, 2018, 560, 258-262.	13.7	79
4	A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer Apex via a Long, Rigidified, and Anionic \hat{l}^2 -Hairpin Structure. Immunity, 2017, 46, 690-702.	6.6	216
5	Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows. Nature, 2017, 548, 108-111.	13.7	154
6	Probing the antigenicity of hepatitis C virus envelope glycoprotein complex by high-throughput mutagenesis. PLoS Pathogens, 2017, 13, e1006735.	2.1	66
7	Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1 envelope metastability. Nature Communications, 2016, 7, 12040.	5.8	134
8	Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles. Nature Communications, 2016, 7, 12041.	5.8	146
9	Key gp120 Glycans Pose Roadblocks to the Rapid Development of VRC01-Class Antibodies in an HIV-1-Infected Chinese Donor. Immunity, 2016, 44, 939-950.	6.6	85
10	Early Antibody Lineage Diversification and Independent Limb Maturation Lead to Broad HIV-1 Neutralization Targeting the Env High-Mannose Patch. Immunity, 2016, 44, 1215-1226.	6.6	138
11	Stabilizing the C _H 2 Domain of an Antibody by Engineering in an Enhanced Aromatic Sequon. ACS Chemical Biology, 2016, 11, 1852-1861.	1.6	40
12	Structural flexibility at a major conserved antibody target on hepatitis C virus E2 antigen. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12768-12773.	3.3	78
13	Protein stability: a crystallographer's perspective. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 72-95.	0.4	175
14	Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding. Scientific Reports, 2015, 5, 12501.	1.6	68
15	Crystal structure of a fully glycosylated HIV-1 gp120 core reveals a stabilizing role for the glycan at Asn262. Proteins: Structure, Function and Bioinformatics, 2015, 83, 590-596.	1.5	42
16	Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused on Accommodating or Avoiding Glycans. Immunity, 2015, 43, 1053-1063.	6.6	200
17	Structure of Hepatitis C Virus Envelope Glycoprotein E1 Antigenic Site 314–324 in Complex with Antibody IGH526. Journal of Molecular Biology, 2015, 427, 2617-2628.	2.0	44
18	Capitalizing on knowledge of hepatitis C virus neutralizing epitopes for rational vaccine design. Current Opinion in Virology, 2015, 11, 148-157.	2.6	54

#	Article	IF	CITATIONS
19	Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2099-2108.	2.5	69
20	Two Classes of Broadly Neutralizing Antibodies within a Single Lineage Directed to the High-Mannose Patch of HIV Envelope. Journal of Virology, 2015, 89, 1105-1118.	1.5	80
21	A Structurally Distinct Human Mycoplasma Protein that Generically Blocks Antigen-Antibody Union. Science, 2014, 343, 656-661.	6.0	85
22	Structural Evolution of Glycan Recognition by a Family of Potent HIV Antibodies. Cell, 2014, 159, 69-79.	13.5	161
23	Hyperglycosylated Stable Core Immunogens Designed To Present the CD4 Binding Site Are Preferentially Recognized by Broadly Neutralizing Antibodies. Journal of Virology, 2014, 88, 14002-14016.	1.5	43
24	Molecular Recognition of HIV Glycans by Antibodies. , 2014, , 117-141.		6
25	Hepatitis C Virus E2 Envelope Glycoprotein Core Structure. Science, 2013, 342, 1090-1094.	6.0	374
26	Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nature Structural and Molecular Biology, 2013, 20, 796-803.	3.6	314
27	Structure of Hepatitis C Virus Envelope Glycoprotein E2 Antigenic Site 412 to 423 in Complex with Antibody AP33. Journal of Virology, 2012, 86, 13085-13088.	1.5	79
28	Structural basis of hepatitis C virus neutralization by broadly neutralizing antibody HCV1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9499-9504.	3.3	135
29	Toward a Carbohydrate-Based HIV-1 Vaccine. ACS Symposium Series, 2012, , 187-215.	0.5	3
30	Journal of AIDS & Clinical Research. Journal of AIDS & Clinical Research, 2012, S8, 3.	0.5	45
31	Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1166-1171.	3.3	304
32	Local Conformational Stability of HIV-1 gp120 in Unliganded and CD4-Bound States as Defined by Amide Hydrogen/Deuterium Exchange. Journal of Virology, 2010, 84, 10311-10321.	1.5	32
33	Expression-System-Dependent Modulation of HIV-1 Envelope Glycoprotein Antigenicity and Immunogenicity. Journal of Molecular Biology, 2010, 403, 131-147.	2.0	67