Marios Soutsos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11284318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Factors influencing the compressive strength of fly ash based geopolymers. Construction and Building Materials, 2016, 110, 355-368.	7.2	194
2	Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders. Cement and Concrete Research, 2019, 116, 45-56.	11.0	157
3	Guidelines for mix proportioning of fly ash/GGBS based alkali activated concretes. Construction and Building Materials, 2017, 147, 130-142.	7.2	139
4	Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs). Cement and Concrete Research, 2019, 122, 118-135.	11.0	119
5	Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity. Construction and Building Materials, 2018, 190, 191-199.	7.2	84
6	Effect of temperature on the strength development of mortar mixes with GGBS and fly ash. Magazine of Concrete Research, 2017, 69, 787-801.	2.0	45
7	Radiological characterisation of alkali-activated construction materials containing red mud, fly ash and ground granulated blast-furnace slag. Science of the Total Environment, 2019, 659, 1496-1504.	8.0	42
8	Efficient mix design of alkali activated slag concretes based on packing fraction of ingredients and paste thickness. Journal of Cleaner Production, 2019, 218, 438-449.	9.3	41
9	Strength development of GGBS and fly ash concretes and applicability of fib model code's maturity function – A critical review. Construction and Building Materials, 2018, 162, 830-846.	7.2	36
10	Assessment of behaviour and cracking susceptibility of cementitious systems under restrained conditions through ring tests: A critical review. Cement and Concrete Composites, 2019, 95, 137-153.	10.7	32
11	The Role of Water Content and Paste Proportion on Physico-mechanical Properties of Alkali Activated Fly Ash–Ggbs Concrete. Journal of Sustainable Metallurgy, 2016, 2, 51-61.	2.3	24
12	Producing sodium silicate powder from iron ore tailings for use as an activator in one-part geopolymer binders. Materials Letters, 2021, 288, 129333.	2.6	21
13	Radiological evaluation of industrial residues for construction purposes correlated with their chemical properties. Science of the Total Environment, 2019, 658, 141-151.	8.0	15
14	Accuracy of maturity functions' strength estimates for fly ash concretes cured at elevated temperatures. Construction and Building Materials, 2021, 266, 121043.	7.2	15
15	Compressive Strength Estimates of Adiabatically Cured Concretes Using Maturity Methods. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	10
16	Recycling of demolition waste in Merseyside. Proceedings of Institution of Civil Engineers: Construction Materials, 2016, 169, 54-66.	1.1	9
17	The modified nurse-saul (MNS) maturity function for improved strength estimates at elevated curing temperatures. Case Studies in Construction Materials, 2018, 9, e00206.	1.7	9
18	Compressive strength estimates for adiabatically cured concretes with the Modified Nurse-Saul (MNS) maturity function. Construction and Building Materials, 2020, 255, 119236.	7.2	9

#	Article	IF	CITATIONS
19	Applicability of fib model code's maturity function for estimating the strength development of GGBS concretes. Construction and Building Materials, 2020, 264, 120157.	7.2	8
20	Rice Husk Ash Derived Sodium Silicate Using Hydrothermal and Convection Heating Methods. Lecture Notes in Civil Engineering, 2020, , 629-646.	0.4	2
21	Low Carbon Geopolymer Hollow Block—Mix Design, Casting and Strength Comparison with OPC Hollow Block. Lecture Notes in Civil Engineering, 2020, , 959-971.	0.4	0