Sini Kuriakose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11284316/publications.pdf

Version: 2024-02-01

13 papers	1,160 citations	12 h-index	1125743 13 g-index
13	13	13	1574
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Two-dimensional CuO-ZnO nanohybrids with enhanced photocatalytic performance for removal of pollutants. Journal of Physics and Chemistry of Solids, 2020, 137, 109223.	4.0	61
2	Facile synthesis of ZnO nanoplates and nanoparticle aggregates for highly efficient photocatalytic degradation of organic dyes. Journal of Physics and Chemistry of Solids, 2018, 121, 186-195.	4.0	69
3	Facile wet chemical synthesis of ZnO nanosheets: Effects of counter ions on the morphological, structural, optical and photocatalytic properties. Ceramics International, 2018, 44, 23094-23101.	4.8	40
4	Facile synthesis of Au-ZnO plasmonic nanohybrids for highly efficient photocatalytic degradation of methylene blue. Optical Materials, 2017, 64, 47-52.	3.6	77
5	Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method. Beilstein Journal of Nanotechnology, 2015, 6, 928-937.	2.8	67
6	Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Physical Chemistry Chemical Physics, 2015, 17, 25172-25181.	2.8	176
7	Facile Synthesis Of Co Doped ZnO Nanodisks For Highly Efficient Photocatalytic Degradation Of Methyl Orange. Advanced Materials Letters, 2015, 6, 217-223.	0.6	17
8	Effects Of Solvent On Structural, Optical And Photocatalytic Properties Of ZnO Nanostructures. Advanced Materials Letters, 2015, 6, 1104-1110.	0.6	13
9	Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. Physical Chemistry Chemical Physics, 2014, 16, 12741.	2.8	301
10	Effects of MeV ion irradiation on structural and optical properties of SnO 2 –ZnO nanocomposites prepared by carbothermal evaporation. Journal of Alloys and Compounds, 2014, 617, 734-739.	5 . 5	8
11	Facile synthesis of Ag–ZnO hybrid nanospindles for highly efficient photocatalytic degradation of methyl orange. Physical Chemistry Chemical Physics, 2014, 16, 17560.	2.8	144
12	Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method. Beilstein Journal of Nanotechnology, 2014, 5, 639-650.	2.8	99
13	Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method. Beilstein Journal of Nanotechnology, 2013, 4, 763-770.	2.8	88