Fedor Naumkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1128303/publications.pdf

Version: 2024-02-01

1040056 940533 31 305 9 16 citations h-index g-index papers 31 31 31 241 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Flat-structural Motives in Small Aluminoâ^'Carbon Clusters C _{<i>n</i>} Al _{<i>m</i>} (<i>n</i> = 2â^'3, <i>m</i> = 2â^'8). Journal of Physical Chemistry A, 2008, 112, 4660-4668.	2.5	38
2	Ligand Impact on Monolayer Electrochromic Material Properties. ACS Applied Materials & Emp; Interfaces, 2018, 10, 35334-35343.	8.0	37
3	A novel material for the detection and removal of mercury(<scp>ii</scp>) based on a 2,6-bis(2-thienyl)pyridine receptor. Journal of Materials Chemistry C, 2019, 7, 10187-10195.	5.5	24
4	Spacer Conjugation and Surface Support Effects in Monolayer Electrochromic Materials. ACS Applied Electronic Materials, 2019, 1, 1705-1717.	4.3	22
5	A small molecule in metal cluster cages: $H2@Mgn$ (n = 8 to 10). Physical Chemistry Chemical Physics, 2009, 11, 2858.	2.8	21
6	A computational study of â€~Al-kanes' and â€~Al-kenes'. Physical Chemistry Chemical Physics, 2014, 16, 7	76 2. %	20
7	Complexes of Be and Mg with unsaturated hydrocarbon molecules: Inter- and intramolecular cooperativity of binding. Chemical Physics Letters, 2010, 499, 203-208.	2.6	14
8	Zero- and High-Pressure Mechanisms in the Complex Forming Reactions of OH with Methanol and Formaldehyde at Low Temperatures. ACS Earth and Space Chemistry, 2019, 3, 1158-1169.	2.7	14
9	Trapped-molecule charge-transfer complexes with huge dipoles: M–C2F6–X (M = Na to Cs, X = Cl to I). Physical Chemistry Chemical Physics, 2008, 10, 6986.	2.8	9
10	Structure and Properties of Small Aurocarbons: A Selective Study. Journal of Physical Chemistry A, 2013, 117, 6803-6808.	2.5	9
11	Shape and property alteration of small silver clusters via doping by carbon: CAgn (nâ $@1/26$). Computational and Theoretical Chemistry, 2013, 1021, 191-196.	2.5	9
12	Insertion complexes of an organic molecule trapped in ion-pairs. New Journal of Chemistry, 2010, 34, 2932.	2.8	7
13	Hydrogen trapped in Ben cluster cages: The atomic encapsulation option. Chemical Physics Letters, 2012, 545, 44-49.	2.6	7
14	Computational Cogitation of C _{<i>n</i>} @Al ₁₂ Clusters. ChemPhysChem, 2015, 16, 233-242.	2.1	7
15	Noncovalently bound complexes of polar molecules: dipole-inside-of-dipole vs. dipole–dipole systems. New Journal of Chemistry, 2017, 41, 13576-13584.	2.8	7
16	Induced hyper-valence of carbon in metal:fluorocarbon complexes. Physical Chemistry Chemical Physics, 2006, 8, 4402.	2.8	6
17	Towards gold shells shaped by carbon cores: From a gold cage to a core–shell aurocarbon. Chemical Physics Letters, 2008, 466, 44-49.	2.6	6
18	H ₂ Molecules Encapsulated in Extended Be _{<i>n</i>li>} Cluster Cages: Toward Light-Metal Nanofoams for Hydrogen Storage. Journal of Physical Chemistry A, 2011, 115, 12105-12110.	2.5	6

#	Article	IF	Citations
19	Reshaping and linking of molecules in ion-pair traps. Chemical Physics Letters, 2016, 643, 137-141.	2.6	6
20	Dipoles Inside of Dipoles: Insertion Complexes of Polar versus Nonpolar Molecules in Ion Pairs. Journal of Physical Chemistry A, 2017, 121, 4545-4551.	2.5	6
21	Metastable Intermolecular Charge-Transfer Complexes with a Pentavalent Carbon Atom. Journal of Physical Chemistry A, 2006, 110, 11392-11395.	2.5	5
22	Beryllium cluster cages endohedrally doped by hydrogen: H ₂ @Be _n (8 â‰) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
23	Energy Landscapes of Carbon Clusters from Tight-Binding Quantum Potentials. Journal of Physical Chemistry A, 2022, 126, 2342-2352.	2.5	5
24	Counterionâ€Trappedâ€Molecules: From High Polarity and Enriched IR Spectra to Induced Isomerization. ChemPhysChem, 2020, 21, 348-355.	2.1	4
25	Communication: A density functional investigation of structure-property evolution in the tetrakis hexahedral C4Al14 nanocluster. Journal of Chemical Physics, 2014, 141, 131102.	3.0	3
26	Shape Symmetrization and IR-Spectral Enhancement of Aluminum Clusters via Doping with a Carbon Core. Journal of Physical Chemistry A, 2021, 125, 5738-5744.	2.5	3
27	Small metal–organic molecular sandwiches: Versatile units for induced structure manipulation. Chemical Physics Letters, 2013, 590, 52-57.	2.6	2
28	Highly Polar Insertion Complexes with Focused IR Spectra and Internal Fieldâ€Inhibited Isomerization. ChemPlusChem, 2020, 85, 2438-2445.	2.8	1
29	Supramolecular complexes with insertionâ€enhanced polarity and tuned IR spectra. International Journal of Quantum Chemistry, 2021, 121, e26534.	2.0	1
30	Chapter 2. Rational Design of Mixed Nanoclusters: Metal Shells Supported and Shaped by Molecular Cores. RSC Theoretical and Computational Chemistry Series, 2011, , 26-57.	0.7	1
31	Hydrogen in Light-Metal Cage Assemblies: Towards a Nanofoam Storage. Progress in Theoretical Chemistry and Physics, 2013, , 211-220.	0.2	0