
Avijit Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11282330/publications.pdf Version: 2024-02-01

Δνιμτ Πλς

#	Article	IF	CITATIONS
1	Robust and Self-Healable Bulk-Superhydrophobic Polymeric Coating. Chemistry of Materials, 2017, 29, 8720-8728.	6.7	65
2	Role of chemistry in bio-inspired liquid wettability. Chemical Society Reviews, 2022, 51, 5452-5497.	38.1	53
3	Synthesis of fish scale and lotus leaf mimicking, stretchable and durable multilayers. Journal of Materials Chemistry A, 2018, 6, 15993-16002.	10.3	37
4	Synergistic chemical patterns on a hydrophilic slippery liquid infused porous surface (SLIPS) for water harvesting applications. Journal of Materials Chemistry A, 2020, 8, 25040-25046.	10.3	30
5	Strategic Formulation of Graphene Oxide Sheets for Flexible Monoliths and Robust Polymeric Coatings Embedded with Durable Bioinspired Wettability. ACS Applied Materials & Interfaces, 2017, 9, 42354-42365.	8.0	26
6	Porous and reactive polymeric interfaces: an emerging avenue for achieving durable and functional bio-inspired wettability. Journal of Materials Chemistry A, 2021, 9, 824-856.	10.3	24
7	Hydrophobicity or superhydrophobicity—which is the right choice for stabilizing underwater superoleophilicity?. Journal of Materials Chemistry A, 2020, 8, 97-106.	10.3	20
8	Synthesis of Dual-Functional and Robust Underwater Superoleophobic Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 28571-28581.	8.0	19
9	Sustainable Biomimicked Oil/Water Wettability That Performs Under Severe Challenges. ACS Sustainable Chemistry and Engineering, 2019, 7, 11350-11359.	6.7	18
10	How Does Chemistry Influence Liquid Wettability on Liquid-Infused Porous Surface?. ACS Applied Materials & Interfaces, 2020, 12, 14531-14541.	8.0	16
11	Facile optimization of hierarchical topography and chemistry on magnetically active graphene oxide nanosheets. Chemical Science, 2020, 11, 6556-6566.	7.4	16
12	Design of †tolerant and hard' superhydrophobic coatings to freeze physical deformation. Materials Horizons, 2021, 8, 2717-2725.	12.2	15
13	Michael Addition Reaction Assisted Derivation of Functional and Durable Superhydrophobic Interfaces. Chemistry of Materials, 2021, 33, 8941-8959.	6.7	14
14	Reduction of imine-based cross-linkages to achieve sustainable underwater superoleophobicity that performs under challenging conditions. Journal of Materials Chemistry A, 2020, 8, 15148-15156.	10.3	13
15	Catalyst-Free and Rapid Chemical Approach for in Situ Growth of "Chemically Reactive―and Porous Polymeric Coating. ACS Applied Materials & Interfaces, 2019, 11, 34316-34329.	8.0	12
16	Customizing oil-wettability in air—without affecting extreme water repellency. Nanoscale, 2020, 12, 24349-24356.	5.6	12
17	Rapid and Scalable Synthesis of a Vanillin-Based Organogelator and Its Durable Composite for a Comprehensive Remediation of Crude-Oil Spillages. ACS Applied Materials & Interfaces, 2021, 13, 46803-46812.	8.0	11
18	Small molecules derived Tailored-Superhydrophobicity on fibrous and porous Substrates—with superior tolerance. Chemical Engineering Journal, 2022, 430, 132597.	12.7	8

#	Article	IF	CITATIONS
19	Abrasion tolerant, non-stretchable and super-water-repellent conductive & ultrasensitive pattern for identifying slow, fast, weak and strong human motions under diverse conditions. Materials Horizons, 2021, 8, 2851-2858.	12.2	6