
Ying Zhuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1128120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials, 2009, 30, 2284-2290.	11.4	210
2	Highly Ordered and Field-Free 3D DNA Nanostructure: The Next Generation of DNA Nanomachine for Rapid Single-Step Sensing. Journal of the American Chemical Society, 2018, 140, 9361-9364.	13.7	192
3	<i>In Situ</i> Electrochemical Generation of Electrochemiluminescent Silver Naonoclusters on Target-Cycling Synchronized Rolling Circle Amplification Platform for MicroRNA Detection. Analytical Chemistry, 2016, 88, 3203-3210.	6.5	174
4	Cu-Based Metal–Organic Frameworks as a Catalyst To Construct a Ratiometric Electrochemical Aptasensor for Sensitive Lipopolysaccharide Detection. Analytical Chemistry, 2015, 87, 11345-11352.	6.5	163
5	Signal-off Electrochemiluminescence Biosensor Based on Phi29 DNA Polymerase Mediated Strand Displacement Amplification for MicroRNA Detection. Analytical Chemistry, 2015, 87, 6328-6334.	6.5	152
6	Strong Electrochemiluminescence from MOF Accelerator Enriched Quantum Dots for Enhanced Sensing of Trace cTnl. Analytical Chemistry, 2018, 90, 3995-4002.	6.5	150
7	Near-infrared aggregation-induced enhanced electrochemiluminescence from tetraphenylethylene nanocrystals: a new generation of ECL emitters. Chemical Science, 2019, 10, 4497-4501.	7.4	148
8	Electrochemiluminescence Resonance Energy Transfer System: Mechanism and Application in Ratiometric Aptasensor for Lead Ion. Analytical Chemistry, 2015, 87, 7787-7794.	6.5	147
9	Ceria Doped Zinc Oxide Nanoflowers Enhanced Luminol-Based Electrochemiluminescence Immunosensor for Amyloid-l² Detection. ACS Applied Materials & Interfaces, 2016, 8, 12968-12975.	8.0	143
10	New Signal Amplification Strategy Using Semicarbazide as Co-reaction Accelerator for Highly Sensitive Electrochemiluminescent Aptasensor Construction. Analytical Chemistry, 2015, 87, 11389-11397.	6.5	135
11	Ultrasensitive Apurinic/Apyrimidinic Endonuclease 1 Immunosensing Based on Self-Enhanced Electrochemiluminescence of a Ru(II) Complex. Analytical Chemistry, 2014, 86, 1053-1060.	6.5	121
12	Electrochemiluminescent Graphene Quantum Dots as a Sensing Platform: A Dual Amplification for MicroRNA Assay. Analytical Chemistry, 2015, 87, 10385-10391.	6.5	121
13	Ultrasensitive simultaneous detection of four biomarkers based on hybridization chain reaction and biotin–streptavidin signal amplification strategy. Biosensors and Bioelectronics, 2015, 68, 42-48.	10.1	119
14	Electrochemiluminescence Biosensor Based on 3-D DNA Nanomachine Signal Probe Powered by Protein-Aptamer Binding Complex for Ultrasensitive Mucin 1 Detection. Analytical Chemistry, 2017, 89, 4280-4286.	6.5	110
15	Morphology-Controlled 9,10-Diphenylanthracene Nanoblocks as Electrochemiluminescence Emitters for MicroRNA Detection with One-Step DNA Walker Amplification. Analytical Chemistry, 2018, 90, 5298-5305.	6.5	98
16	Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection. Biosensors and Bioelectronics, 2014, 55, 360-365.	10.1	97
17	Highly Efficient Electrochemiluminescent Silver Nanoclusters/Titanium Oxide Nanomaterials as a Signal Probe for Ferrocene-Driven Light Switch Bioanalysis. Analytical Chemistry, 2017, 89, 3732-3738.	6.5	97
18	Self-Enhanced Electrochemiluminescence Nanorods of Tris(bipyridine) Ruthenium(II) Derivative and Its Sensing Application for Detection of <i>N</i> -Acetyl-β- <scp>d</scp> -glucosaminidase. Analytical Chemistry, 2016, 88, 2258-2265.	6.5	95

#	Article	IF	CITATIONS
19	Ultrasensitive Assay for Telomerase Activity via Self-Enhanced Electrochemiluminescent Ruthenium Complex Doped Metal–Organic Frameworks with High Emission Efficiency. Analytical Chemistry, 2017, 89, 3222-3227.	6.5	95
20	Cu Nanoclusters: Novel Electrochemiluminescence Emitters for Bioanalysis. Analytical Chemistry, 2016, 88, 11527-11532.	6.5	94
21	MoS ₂ Quantum Dots as New Electrochemiluminescence Emitters for Ultrasensitive Bioanalysis of Lipopolysaccharide. Analytical Chemistry, 2017, 89, 8335-8342.	6.5	94
22	SnS ₂ Quantum Dots as New Emitters with Strong Electrochemiluminescence for Ultrasensitive Antibody Detection. Analytical Chemistry, 2018, 90, 12270-12277.	6.5	93
23	Silver Ions as Novel Coreaction Accelerator for Remarkably Enhanced Electrochemiluminescence in a PTCA–S ₂ O ₈ ^{2–} System and Its Application in an Ultrasensitive Assay for Mercury Ions. Analytical Chemistry, 2018, 90, 6851-6858.	6.5	91
24	Ultrasensitive electrochemical immunosensor for carbohydrate antigen 19-9 using Au/porous graphene nanocomposites as platform and Au@Pd core/shell bimetallic functionalized graphene nanocomposites as signal enhancers. Biosensors and Bioelectronics, 2015, 66, 356-362.	10.1	90
25	Ternary Electrochemiluminescence System Based on Rubrene Microrods as Luminophore and Pt Nanomaterials as Coreaction Accelerator for Ultrasensitive Detection of MicroRNA from Cancer Cells. Analytical Chemistry, 2017, 89, 9108-9115.	6.5	90
26	Anodic Electrochemiluminescence of Carbon Dots Promoted by Nitrogen Doping and Application to Rapid Cancer Cell Detection. Analytical Chemistry, 2020, 92, 1379-1385.	6.5	88
27	New Type of Redox Nanoprobe: C ₆₀ -Based Nanomaterial and Its Application in Electrochemical Immunoassay for Doping Detection. Analytical Chemistry, 2015, 87, 1669-1675.	6.5	85
28	Cu/Mn Double-Doped CeO ₂ Nanocomposites as Signal Tags and Signal Amplifiers for Sensitive Electrochemical Detection of Procalcitonin. Analytical Chemistry, 2017, 89, 13349-13356.	6.5	81
29	A novel metal–organic framework loaded with abundant N-(aminobutyl)-N-(ethylisoluminol) as a high-efficiency electrochemiluminescence indicator for sensitive detection of mucin1 on cancer cells. Chemical Communications, 2017, 53, 9705-9708.	4.1	80
30	Glucose oxidase and ferrocene labels immobilized at Au/TiO2 nanocomposites with high load amount and activity for sensitive immunoelectrochemical measurement of ProGRP biomarker. Biosensors and Bioelectronics, 2011, 26, 3838-3844.	10.1	79
31	Universal Ratiometric Photoelectrochemical Bioassay with Target-Nucleotide Transduction-Amplification and Electron-Transfer Tunneling Distance Regulation Strategies for Ultrasensitive Determination of microRNA in Cells. Analytical Chemistry, 2017, 89, 9445-9451.	6.5	79
32	An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer. Biosensors and Bioelectronics, 2015, 69, 321-327.	10.1	78
33	DNA nanomachine-based regenerated sensing platform: a novel electrochemiluminescence resonance energy transfer strategy for ultra-high sensitive detection of microRNA from cancer cells. Nanoscale, 2017, 9, 2310-2316.	5.6	77
34	In situ electro-polymerization of nitrogen doped carbon dots and their application in an electrochemiluminescence biosensor for the detection of intracellular lead ions. Chemical Communications, 2016, 52, 5589-5592.	4.1	76
35	Electrochemiluminescence Enhanced by Restriction of Intramolecular Motions (RIM): Tetraphenylethylene Microcrystals as a Novel Emitter for Mucin 1 Detection. Analytical Chemistry, 2019, 91, 3710-3716.	6.5	75
36	In Situ Electrodeposited Synthesis of Electrochemiluminescent Ag Nanoclusters as Signal Probe for Ultrasensitive Detection of Cyclin-D1 from Cancer Cells. Analytical Chemistry, 2017, 89, 6787-6793.	6.5	74

Ying Zhuo

#	Article	IF	CITATIONS
37	Dual microRNAs-Fueled DNA Nanogears: A Case of Regenerated Strategy for Multiple Electrochemiluminescence Detection of microRNAs with Single Luminophore. Analytical Chemistry, 2017, 89, 1338-1345.	6.5	70
38	Ferrocene covalently confined in porous MOF as signal tag for highly sensitive electrochemical immunoassay of amyloid-l². Journal of Materials Chemistry B, 2017, 5, 8330-8336.	5.8	69
39	Hollow Porous Polymeric Nanospheres of a Self-Enhanced Ruthenium Complex with Improved Electrochemiluminescent Efficiency for Ultrasensitive Aptasensor Construction. Analytical Chemistry, 2017, 89, 9232-9238.	6.5	69
40	Novel Ru(bpy) ₂ (cpaphen) ²⁺ /TPrA/TiO ₂ Ternary ECL System: An Efficient Platform for the Detection of Glutathione with Mn ²⁺ as Substitute Target. Analytical Chemistry, 2019, 91, 3681-3686.	6.5	69
41	A Janus 3D DNA nanomachine for simultaneous and sensitive fluorescence detection and imaging of dual microRNAs in cancer cells. Chemical Science, 2020, 11, 8482-8488.	7.4	68
42	Ultrasensitive electrochemical strategy for NT-proBNP detection with gold nanochains and horseradish peroxidase complex amplification. Biosensors and Bioelectronics, 2011, 26, 2188-2193.	10.1	67
43	Ce-based metal-organic frameworks and DNAzyme-assisted recycling as dual signal amplifiers for sensitive electrochemical detection of lipopolysaccharide. Biosensors and Bioelectronics, 2016, 83, 287-292.	10.1	67
44	Nanostructured conductive material containing ferrocenyl for reagentless amperometric immunosensors. Biomaterials, 2008, 29, 1501-1508.	11.4	66
45	In Situ Controllable Generation of Copper Nanoclusters Confined in a Poly- <scp>l</scp> -Cysteine Porous Film with Enhanced Electrochemiluminescence for Alkaline Phosphatase Detection. Analytical Chemistry, 2020, 92, 13581-13587.	6.5	66
46	Au nanoparticles decorated C60 nanoparticle-based label-free electrochemiluminesence aptasensor via a novel "on-off-on―switch system. Biomaterials, 2015, 52, 476-483.	11.4	65
47	Perylene Derivative/Luminol Nanocomposite as a Strong Electrochemiluminescence Emitter for Construction of an Ultrasensitive MicroRNA Biosensor. Analytical Chemistry, 2019, 91, 1516-1523.	6.5	63
48	Ultrasensitive Cytosensor Based on Self-Enhanced Electrochemiluminescent Ruthenium-Silica Composite Nanoparticles for Efficient Drug Screening with Cell Apoptosis Monitoring. Analytical Chemistry, 2015, 87, 12363-12371.	6.5	62
49	Enzyme-free Target Recycling and Double-Output Amplification System for Electrochemiluminescent Assay of Mucin 1 with MoS ₂ Nanoflowers as Co-reaction Accelerator. ACS Applied Materials & Interfaces, 2018, 10, 14483-14490.	8.0	61
50	Hemin as electrochemically regenerable co-reaction accelerator for construction of an ultrasensitive PTCA-based electrochemiluminescent aptasensor. Biosensors and Bioelectronics, 2018, 100, 490-496.	10.1	60
51	Ultrasensitive Electrochemiluminescence Biosensing Platform for Detection of Multiple Types of Biomarkers toward Identical Cancer on a Single Interface. Analytical Chemistry, 2017, 89, 12821-12827.	6.5	56
52	Simply Constructed and Highly Efficient Classified Cargo-Discharge DNA Robot: A DNA Walking Nanomachine Platform for Ultrasensitive Multiplexed Sensing. Analytical Chemistry, 2019, 91, 8123-8128.	6.5	55
53	Covalent organic frameworks as micro-reactors: confinement-enhanced electrochemiluminescence. Chemical Science, 2020, 11, 5410-5414.	7.4	55
54	Target-catalyzed hairpin assembly and intramolecular/intermolecular co-reaction for signal amplified electrochemiluminescent detection of microRNA. Biosensors and Bioelectronics. 2016, 77, 442-450.	10.1	54

#	Article	IF	CITATIONS
55	Swing Arm Location-Controllable DNA Walker for Electrochemiluminescence Biosensing. Analytical Chemistry, 2021, 93, 4051-4058.	6.5	53
56	Sensitive Electrochemiluminescence Immunosensor for Detection of <i>N</i> -Acetyl-β- <scp>d</scp> -glucosaminidase Based on a "Light-Switch―Molecule Combined with DNA Dendrimer. Analytical Chemistry, 2016, 88, 5797-5803.	6.5	52
57	A sensitive electrochemiluminescent aptasensor based on perylene derivatives as a novel co-reaction accelerator for signal amplification. Biosensors and Bioelectronics, 2016, 85, 8-15.	10.1	52
58	An Affinity-Enhanced DNA Intercalator with Intense ECL Embedded in DNA Hydrogel for Biosensing Applications. Analytical Chemistry, 2020, 92, 11044-11052.	6.5	51
59	Sandwich-format electrochemiluminescence assays for tumor marker based on PAMAM dendrimer-l-cysteine-hollow gold nanosphere nanocomposites. Biosensors and Bioelectronics, 2014, 53, 459-464.	10.1	49
60	Electrochemiluminescence of Supramolecular Nanorods and Their Application in the "On–Off–On― Detection of Copper Ions. Chemistry - A European Journal, 2016, 22, 8207-8214.	3.3	49
61	Highly Effective Protein Converting Strategy for Ultrasensitive Electrochemical Assay of Cystatin C. Analytical Chemistry, 2016, 88, 5189-5196.	6.5	48
62	Electrochemiluminescence biosensing based on different modes of switching signals. Analyst, The, 2018, 143, 3230-3248.	3.5	48
63	Novel electrochemiluminescence of perylene derivative and its application to mercury ion detection based on a dual amplification strategy. Biosensors and Bioelectronics, 2016, 86, 720-727.	10.1	45
64	A tris(2,2′-bipyridyl)cobalt(III)-bovine serum albumin composite membrane for biosensors. Biomaterials, 2006, 27, 5420-5429.	11.4	43
65	Electrochemiluminescence immunosensor based on multifunctional luminol-capped AuNPs@Fe 3 O 4 nanocomposite for the detection of mucin-1. Biosensors and Bioelectronics, 2015, 71, 407-413.	10.1	43
66	Highly Efficient Intramolecular Electrochemiluminescence Energy Transfer for Ultrasensitive Bioanalysis of Aflatoxin M1. Chemistry - A European Journal, 2017, 23, 1853-1859.	3.3	43
67	An ultrasensitive aptasensor based on self-enhanced Au nanoclusters as highly efficient electrochemiluminescence indicator and multi-site landing DNA walker as signal amplification. Biosensors and Bioelectronics, 2019, 130, 262-268.	10.1	43
68	Functionalized SiO2 labeled CA19-9 antibodies: A new strategy for signal amplification of antigen–antibody sensing processes. Analyst, The, 2010, 135, 2036.	3.5	41
69	Amplified Thrombin Aptasensor Based on Alkaline Phosphatase and Hemin/G-Quadruplex-Catalyzed Oxidation of 1-Naphthol. ACS Applied Materials & Interfaces, 2015, 7, 10308-10315.	8.0	41
70	A robust, magnetic, and self-accelerated electrochemiluminescent nanosensor for ultrasensitive detection of copper ion. Biosensors and Bioelectronics, 2018, 109, 109-115.	10.1	40
71	Electrochemiluminescence covalent organic framework coupling with CRISPR/Cas12a-mediated biosensor for pesticide residue detection. Food Chemistry, 2022, 389, 133049.	8.2	40
72	An efficient target–intermediate recycling amplification strategy for ultrasensitive fluorescence assay of intracellular lead ions. Chemical Communications, 2017, 53, 7525-7528.	4.1	39

#	Article	IF	CITATIONS
73	Homogeneous Entropy Catalytic-Driven DNA Hydrogel as Strong Signal Blocker for Highly Sensitive Electrochemical Detection of Platelet-Derived Growth Factor. Analytical Chemistry, 2018, 90, 8241-8247.	6.5	39
74	Multiparameter Analysis-Based Electrochemiluminescent Assay for Simultaneous Detection of Multiple Biomarker Proteins on a Single Interface. Analytical Chemistry, 2016, 88, 4940-4948.	6.5	38
75	A synergistic promotion strategy remarkably accelerated electrochemiluminescence of SnO2 QDs for MicroRNA detection using 3D DNA walker amplification. Biosensors and Bioelectronics, 2021, 173, 112820.	10.1	38
76	A Reagentless Amperometric Immunosensor for Alpha-Fetoprotein Based on Gold Nanoparticles/TiO2 Colloids/Prussian Blue Modified Platinum Electrode. Electroanalysis, 2007, 19, 1402-1410.	2.9	37
77	Dendritic Silver/Silicon Dioxide Nanocomposite Modified Electrodes for Electrochemical Sensing of Hydrogen Peroxide. Electroanalysis, 2008, 20, 1839-1844.	2.9	37
78	Self-enhanced N-(aminobutyl)-N-(ethylisoluminol) derivative-based electrochemiluminescence immunosensor for sensitive laminin detection using PdIr cubes as a mimic peroxidase. Nanoscale, 2016, 8, 8017-8023.	5.6	37
79	Construction of Fast-Walking Tetrahedral DNA Walker with Four Arms for Sensitive Detection and Intracellular Imaging of Apurinic/Apyrimidinic Endonuclease 1. Analytical Chemistry, 2022, 94, 8732-8739.	6.5	37
80	A Novel Ratiometric Electrochemical Biosensor Using Only One Signal Tag for Highly Reliable and Ultrasensitive Detection of miRNA-21. Analytical Chemistry, 2022, 94, 5167-5172.	6.5	36
81	Highly efficient electrogenerated chemiluminescence quenching of PEI enhanced Ru(bpy)32+ nanocomposite by hemin and Au@CeO2 nanoparticles. Biosensors and Bioelectronics, 2015, 63, 392-398.	10.1	35
82	Host–Guest Recognition-Assisted Electrochemical Release: Its Reusable Sensing Application Based on DNA Cross Configuration-Fueled Target Cycling and Strand Displacement Reaction Amplification. Analytical Chemistry, 2017, 89, 8266-8272.	6.5	34
83	Self-accelerated electrochemiluminescence emitters of Ag@SnO2 nanoflowers for sensitive detection of cardiac troponin T. Electrochimica Acta, 2018, 271, 464-471.	5.2	34
84	A Dynamic DNA Machine via Free Walker Movement on Lipid Bilayer for Ultrasensitive Electrochemiluminescent Bioassay. Analytical Chemistry, 2019, 91, 14125-14132.	6.5	34
85	Ultrasensitive electrochemiluminescent detection of cardiac troponin I based on a self-enhanced Ru(II) complex. Talanta, 2014, 129, 219-226.	5.5	33
86	Triple Quenching of a Novel Self-Enhanced Ru(II) Complex by Hemin/G-Quadruplex DNAzymes and Its Potential Application to Quantitative Protein Detection. Analytical Chemistry, 2015, 87, 7602-7609.	6.5	33
87	A sensitive immunosensor via in situ enzymatically generating efficient quencher for electrochemiluminescence of iridium complexes doped SiO2 nanoparticles. Biosensors and Bioelectronics, 2017, 94, 568-574.	10.1	33
88	Pore Confinement-Enhanced Electrochemiluminescence on SnO ₂ Nanocrystal Xerogel with NO ₃ [–] As Co-Reactant and Its Application in Facile and Sensitive Bioanalysis. Analytical Chemistry, 2020, 92, 2839-2846.	6.5	33
89	A core–brush 3D DNA nanostructure: the next generation of DNA nanomachine for ultrasensitive sensing and imaging of intracellular microRNA with rapid kinetics. Chemical Science, 2021, 12, 15953-15959.	7.4	33
90	A nanohybrid of platinum nanoparticles-porous ZnO–hemin with electrocatalytic activity to construct an amplified immunosensor for detection of influenza. Biosensors and Bioelectronics, 2016, 78, 321-327.	10.1	32

Үімд Хнио

#	Article	IF	CITATIONS
91	In situ generation of electrochemiluminescent DNA nanoflowers as a signal tag for mucin 1 detection based on a strategy of target and mimic target synchronous cycling amplification. Chemical Communications, 2017, 53, 9624-9627.	4.1	32
92	Amplified impedimetric aptasensor combining target-induced DNA hydrogel formation with pH-stimulated signal amplification for the heparanase assay. Nanoscale, 2017, 9, 2556-2562.	5.6	31
93	Application of Antibody-Powered Triplex-DNA Nanomachine to Electrochemiluminescence Biosensor for the Detection of Anti-Digoxigenin with Improved Sensitivity Versus Cycling Strand Displacement Reaction. ACS Applied Materials & Interfaces, 2018, 10, 38648-38655.	8.0	31
94	Kill Three Birds with One Stone: Poly(3,4-ethylenedioxythiophene)-Hosted Ag Nanoclusters with Boosted Cathodic Electrochemiluminescence for Biosensing Application. Analytical Chemistry, 2021, 93, 1120-1125.	6.5	30
95	CDs assembled metal-organic framework: Exogenous coreactant-free biosensing platform with pore confinement-enhanced electrochemiluminescence. Chinese Chemical Letters, 2022, 33, 4803-4807.	9.0	30
96	Chargeâ€Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solarâ€Thermal Conversion. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
97	Amplified electrochemiluminescent aptasensor using mimicking bi-enzyme nanocomplexes as signal enhancement. Analytica Chimica Acta, 2014, 809, 47-53.	5.4	28
98	Organic Dots Embedded in Mesostructured Silica Xerogel as High-Performance ECL Emitters: Preparation and Application for MicroRNA-126 Detection. ACS Applied Materials & Interfaces, 2020, 12, 3945-3952.	8.0	28
99	Competitive method-based electrochemiluminescent assay with protein–nucleotide conversion for ratio detection to efficiently monitor the drug resistance of cancer cells. Chemical Science, 2016, 7, 7094-7100.	7.4	27
100	Efficient Electrochemical Self-Catalytic Platform Based on <scp>l</scp> -Cys-hemin/G-quadruplex and Its Application for Bioassay. Analytical Chemistry, 2018, 90, 9109-9116.	6.5	27
101	3D Matrix-Arranged AuAg Nanoclusters As Electrochemiluminescence Emitters for Click Chemistry-Driven Signal Switch Bioanalysis. Analytical Chemistry, 2020, 92, 2566-2572.	6.5	27
102	Programmable mismatch-fueled high-efficiency DNA signal converter. Chemical Science, 2020, 11, 148-153.	7.4	27
103	High throughput immunosenor based on multi-label strategy and a novel array electrode. Scientific Reports, 2014, 4, 4747.	3.3	26
104	Bipedal DNA walker mediated enzyme-free exponential isothermal signal amplification for rapid detection of microRNA. Chemical Communications, 2019, 55, 13932-13935.	4.1	26
105	BSA stabilized tetraphenylethylene nanocrystals as aggregation-induced enhanced electrochemiluminescence emitters for ultrasensitive microRNA assay. Chemical Communications, 2019, 55, 9959-9962.	4.1	24
106	3,4,9,10â€Perylenetetracarboxylic Acid/Hemin Nanocomposites Act as Redox Probes and Electrocatalysts for Constructing a Pseudobienzyme hanneling Amplified Electrochemical Aptasensor. Chemistry - A European Journal, 2012, 18, 14186-14191.	3.3	23
107	Crystallization-Induced Enhanced Electrochemiluminescence from Tetraphenyl Alkene Nanocrystals for Ultrasensitive Sensing. Analytical Chemistry, 2021, 93, 10890-10897.	6.5	23
108	Electrochemiluminescence Aptasensor Based on Cascading Amplification of Nicking Endonuclease-Assisted Target Recycling and Rolling Circle Amplifications for Mucin 1 Detection. Electrochimica Acta, 2016, 212, 767-774.	5.2	22

#	Article	IF	CITATIONS
109	Electrochemiluminescent Pb ²⁺ -Driven Circular Etching Sensor Coupled to a DNA Micronet-Carrier. ACS Applied Materials & Interfaces, 2017, 9, 39812-39820.	8.0	22
110	Graphene encapsuled Ru nanocrystal with highly-efficient peroxidase-like activity for glutathione detection at near-physiological pH. Chemical Communications, 2021, 57, 7669-7672.	4.1	22
111	Amperometric Immunosensor for the Determination of αâ€I â€Fetoprotein Based on Coreâ€Shellâ€Shell Prussian Blueâ€BSAâ€Nanogold Functionalized Interface. Electroanalysis, 2008, 20, 2185-2191.	2.9	21
112	The Ru complex and hollow gold nanoparticles branched-hydrogel as signal probe for construction of electrochemiluminescent aptasensor. Biosensors and Bioelectronics, 2016, 77, 7-12.	10.1	21
113	CuS porous nanospheres as a novel noble metal-free co-reaction accelerator for enhancing electrochemiluminescence and sensitive immunoassay of mucin 1. Sensors and Actuators B: Chemical, 2018, 274, 110-115.	7.8	21
114	Determination of carcinoembryonic antigen using a novel amperometric enzyme-electrode based on layer-by-layer assembly of gold nanoparticles and thionine. Science in China Series B: Chemistry, 2007, 50, 97-104.	0.8	20
115	Horseradish peroxidase-loaded nanospheres attached to hollow gold nanoparticles as signal enhancers in an ultrasensitive immunoassay for alpha-fetoprotein. Mikrochimica Acta, 2014, 181, 679-685.	5.0	20
116	A novel ECL biosensor for Î ² -lactamase detection: Using RU(II) linked-ampicillin complex as the recognition element. Biosensors and Bioelectronics, 2015, 70, 221-225.	10.1	20
117	Intense electrochemiluminescence from an organic microcrystal accelerated H ₂ O ₂ -free luminol system for microRNA detection. Chemical Communications, 2020, 56, 9000-9003.	4.1	20
118	Versatile metal graphitic nanocapsules for SERS bioanalysis. Chinese Chemical Letters, 2019, 30, 1581-1592.	9.0	19
119	Programming a " <i>Crab Claw</i> ―like DNA Nanomachine as a Super Signal Amplifier for Ultrasensitive Electrochemical Assay of Hg ²⁺ . Analytical Chemistry, 2021, 93, 12075-12080.	6.5	19
120	An efficient electrochemiluminescence amplification strategy via bis-co-reaction accelerator for sensitive detection of laminin to monitor overnutrition associated liver damage. Biosensors and Bioelectronics, 2017, 98, 317-324.	10.1	18
121	DNA Structure Transition-Induced Affinity Switch for Biosensing Based on the Strong Electrochemiluminescence Platform from Organic Microcrystals. Analytical Chemistry, 2020, 92, 3940-3948.	6.5	18
122	Development of Hollow Electrochemiluminescent Nanocubes Combined with a Multisite-Anchored DNA Nanomachine for Mycotoxin Detection. Analytical Chemistry, 2021, 93, 5301-5308.	6.5	18
123	MicroRNA-Triggered Deconstruction of Field-Free Spherical Nucleic Acid as an Electrochemiluminescence Biosensing Switch. Analytical Chemistry, 2021, 93, 13928-13934.	6.5	18
124	Electrochemiluminescent carbon dot-based determination of microRNA-21 by using a hemin/G-wire supramolecular nanostructure as co-reaction accelerator. Mikrochimica Acta, 2018, 185, 432.	5.0	17
125	A dynamic 3D DNA nanostructure based on silicon-supported lipid bilayers: a highly efficient DNA nanomachine for rapid and sensitive sensing. Chemical Communications, 2019, 55, 13414-13417.	4.1	17
126	Stabilizing Enzymes in Plasmonic Silk Film for Synergistic Therapy of In Situ SERS Identified Bacteria. Advanced Science, 2022, 9, e2104576.	11.2	17

#	Article	IF	CITATIONS
127	A Magnetocatalytic Propelled Cobalt–Platinum@Graphene Navigator for Enhanced Tumor Penetration and Theranostics. CCS Chemistry, 2022, 4, 2382-2395.	7.8	16
128	Advances in metal graphitic nanocapsules for biomedicine. Exploration, 2022, 2, .	11.0	16
129	A reagentless electrochemiluminescent immunosensor for apurinic/apyrimidinic endonuclease 1 detection based on the new Ru(bpy)32+/bi-arginine system. Analytica Chimica Acta, 2014, 846, 36-43.	5.4	15
130	Engineering a high-efficient DNA amplifier for biosensing application based on perylene decorated Ag microflowers as novel electrochemiluminescence indicators. Biosensors and Bioelectronics, 2021, 182, 113178.	10.1	15
131	Discrimination between Cancer Cells and DNA-Damaged Cells: Pre-miRNA Region Recognition Based on Hyperbranched Hybrid Chain Reaction Amplification for Simultaneous Sensitive Detection and Imaging of miRNA and Pre-miRNA. Analytical Chemistry, 2022, 94, 9911-9918.	6.5	15
132	A well-directional three-dimensional DNA walking nanomachine that runs in an orderly manner. Chemical Science, 2020, 11, 2193-2199.	7.4	14
133	Hydrogen-Bonding-Induced H-Aggregation of Charge-Transfer Complexes for Ultra-Efficient Second Near-Infrared Region Photothermal Conversion. CCS Chemistry, 2022, 4, 2333-2343.	7.8	14
134	Epigenetic Quantification of 5-Hydroxymethylcytosine Signatures <i>via</i> Regulatable DNAzyme Motor Triggered by Strand Displacement Amplification. Analytical Chemistry, 2022, 94, 3313-3319.	6.5	14
135	Electrochemiluminescence Sensor Based on Multiwalled Carbon Nanotubes Doped Polyvinyl Butyral Film Containing Ru(bpy)\$m{ {_{3}^{2+}}} as Chemiluminescence Reagent. Electroanalysis, 2009, 21, 1636-1640.	2.9	13
136	Recent Advances in Multifunctional Graphitic Nanocapsules for Raman Detection, Imaging, and Therapy. Small Methods, 2020, 4, 1900440.	8.6	13
137	Quadrilateral Nucleic Acid Frame-Accelerating DNAzyme Walker Kinetics for Biosensing Based on Host–Guest Recognition-Enhanced Electrochemiluminescence. Analytical Chemistry, 2021, 93, 15493-15500.	6.5	13
138	New Signal Probe Integrated with ABEI as ECL Luminophore and Ag Nanoparticles Decorated CoS Nanoflowers as Bis-Co-Reaction Accelerator to Develop a Ultrasensitive cTnT Immunosensor. Journal of the Electrochemical Society, 2018, 165, B686-B693.	2.9	12
139	Biomoleculeâ€Doped Organic/Inorganic Hybrid Nanocomposite Film for Labelâ€Free Electrochemical Immunoassay of αâ€I â€Fetoprotein. Electroanalysis, 2008, 20, 989-995.	2.9	11
140	Influence of annealing temperature on microstructure and lithium storage performance of self-templated Cu _x Co _{3â^x} O ₄ hollow microspheres. RSC Advances, 2016, 6, 62640-62646.	3.6	10
141	Ag@Pyc Nanocapsules as Electrochemiluminescence Emitters for an Ultrasensitive Assay of the APE1 Activity. Analytical Chemistry, 2022, 94, 9934-9939.	6.5	10
142	A Novel Amperometric Biosensor for Determination of Hydrogen Peroxide Based on Nafion and Polythionine as Well as Gold Nanoparticles and Gelatin as Matrixes. Analytical Letters, 2006, 39, 483-494.	1.8	9
143	Interaction-Transferable Graphene-Isolated Superstable AuCo Nanocrystal-Enabled Direct Cyanide Capture. Analytical Chemistry, 2019, 91, 8762-8766.	6.5	9
144	Efficient electrochemiluminescence of perylene nanocrystal entrapped in hierarchical porous Au nanoparticle-graphene oxide film for bioanalysis based on one-pot DNA amplification. Electrochimica Acta, 2020, 332, 135389.	5.2	9

Үімд Хнио

#	Article	IF	CITATIONS
145	Sensitive electrochemiluminescence biosensor for glutathione using MnO2 nanoflower as novel co-reaction accelerator for Ru complex/tripropylamine system. Analytica Chimica Acta, 2021, 1188, 339181.	5.4	9
146	A noncovalent Ru(phen)32+@CNTs nanocomposite and its application as a solid-state electrochemiluminescence signal probe. RSC Advances, 2014, 4, 1955-1960.	3.6	8
147	Signal Amplification Strategy with Synergistic Catalysis of Hollow Pt Nanochains and Hemoglobin for Electrochemical Immunosensor. Journal of the Electrochemical Society, 2014, 161, B26-B30.	2.9	8
148	Versatile <scp>Grapheneâ€Isolated AuAgâ€Nanocrystal</scp> for Multiphase Analysis and Multimodal Cellular Raman Imaging ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1491-1497.	4.9	8
149	An ATP-fueled nucleic acid signal amplification strategy for highly sensitive microRNA detection. Chemical Communications, 2018, 54, 10897-10900.	4.1	7
150	A near-infrared light-controlled, ultrasensitive one-step photoelectrochemical detection of dual cell apoptosis indicators in living cancer cells. Chemical Communications, 2020, 56, 8488-8491.	4.1	6
151	Enzyme-mimic activity study of superstable and ultrasmall graphene encapsuled CoRu nanocrystal. APL Materials, 2021, 9, .	5.1	6
152	Metal-organic Frameworks (MOF)-based Novel Electrochemiluminescence Biosensing Platform for Quantification of H ₂ O ₂ Releasing from Tumor Cells. Acta Chimica Sinica, 2021, 79, 1257.	1.4	6
153	Chargeâ€Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solarâ€Thermal Conversion. Angewandte Chemie, 0, , .	2.0	6
154	Advances in Electrochemiluminescence Biosensors Based on DNA Walkers. ChemPlusChem, 2022, 87, e202200070.	2.8	6
155	Electrochemical immunoassay for human chorionic gonadotrophin based on Pt hollow nanospheres and silver/titanium dioxide nanocomposite matrix. Journal of Chemical Technology and Biotechnology, 2010, 85, 577-582.	3.2	3
156	An amperometric immunosensor for detection of Streptococcus suis serotype 2 using a nickel–gold nanocomposite as a tracer matrix. RSC Advances, 2015, 5, 79323-79328.	3.6	3
157	Pyrenecarboxaldehyde encapsulated porous TiO ₂ nanoreactors for monitoring cellular GSH levels. Nanoscale, 2022, 14, 5751-5757.	5.6	3
158	One-Step Digital Droplet Auto-Catalytic Nucleic Acid Amplification with High-Throughput Fluorescence Imaging and Droplet Tracking Computation. Analytical Chemistry, 2022, 94, 9166-9175.	6.5	3
159	Direct growth of Pt@Ag nanochains on tailorable graphene oxide with a green, in situ, template-free method and its biosensing application. Analyst, The, 2014, 139, 2560.	3.5	2
160	Tetrakis(4-aminophenyl) ethene-doped perylene microcrystals with strong electrochemiluminescence for biosensing applications. Analyst, The, 2020, 145, 5260-5265.	3.5	0