Majid Muneer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11280737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and characterization of ZnO decorated reduced graphene oxide (ZnO-rGO) and evaluation of its photocatalytic activity toward photodegradation of methylene blue. Environmental Science and Pollution Research, 2022, 29, 418-430.	5.3	40
2	Photocatalysis: an effective tool for photodegradation of dyes—a review. Environmental Science and Pollution Research, 2022, 29, 293-311.	5.3	139
3	Synthesis of a CoO–ZnO photocatalyst for enhanced visible-light assisted photodegradation of methylene blue. New Journal of Chemistry, 2022, 46, 2224-2231.	2.8	30
4	Biosorption of metribuzin pesticide by Cucumber (Cucumis sativus) peels-zinc oxide nanoparticles composite. Scientific Reports, 2022, 12, 5840.	3.3	8
5	Development of Bi2O3-ZnO heterostructure for enhanced photodegradation of rhodamine B and reactive yellow dyes. Surfaces and Interfaces, 2022, 30, 101846.	3.0	31
6	Antimicrobial, selective antibiofilm, and antioxidant properties of plasticized PMMA/PVC and zinc oxide nano filler for biomedical applications Pakistan Journal of Pharmaceutical Sciences, 2022, 35, 233-238.	0.2	0
7	SnO2/UV/H2O2 and TiO2/UV/H2O2 Efficiency for the Degradation of Reactive Yellow 160A: By-Product Distribution, Cytotoxicity and Mutagenicity Evaluation. Catalysts, 2022, 12, 553.	3.5	6
8	Oxone activated TiO2 in presence of UV-LED light for the degradation of moxifloxacin: A mechanistic study. Arabian Journal of Chemistry, 2022, 15, 104061.	4.9	4
9	ZnO–TiO2: Synthesis, Characterization and Evaluation of Photo Catalytic Activity towards Degradation of Methyl Orange. Zeitschrift Fur Physikalische Chemie, 2021, 235, 225-237.	2.8	11
10	Degradation of moxifloxacin by ionizing radiation and toxicity assessment. Zeitschrift Fur Physikalische Chemie, 2021, 235, 1629-1643.	2.8	2
11	Synthesis and characterization of Bi ₂ O ₃ and Ag-Bi ₂ O ₃ and evaluation of their photocatalytic activities towards photodegradation of crystal violet dye. Physica Scripta, 2021, 96, 125707.	2.5	14
12	<scp><i>Helianthus annuus</i></scp> assisted green synthesis of <scp>Co₃O₄</scp> and <scp>Ag o₃O₄</scp> and evaluation of their catalytic activities toward photodegradation of crystal violet dye. Environmental Progress and Sustainable Energy, 2021, 40, e13591.	2.3	12
13	Synthesis and Characterization of Co–ZnO and Evaluation of Its Photocatalytic Activity for Photodegradation of Methyl Orange. ACS Omega, 2021, 6, 1426-1435.	3.5	163
14	Influence of Microwave Radiation on Dyeing of Bio-mordanted Silk Fabric using Neem Bark (<i>Azadirachta indica</i>)-Based Tannin Natural Dye. Journal of Natural Fibers, 2020, 17, 1410-1422.	3.1	50
15	Sustainable application of cochineal-based anthraquinone dye for the coloration of bio-mordanted silk fabric. Environmental Science and Pollution Research, 2020, 27, 6851-6860.	5.3	40
16	Gamma and UV radiations induced treatment of anti-cancer methotrexate drug in aqueous medium: Effect of process variables on radiation efficiency evaluated using bioassays. Applied Radiation and Isotopes, 2020, 166, 109371.	1.5	5
17	Synthesis of Ag-Fe3O4 nanoparticles for degradation of methylene blue in aqueous medium. Bulletin of the Chemical Society of Ethiopia, 2020, 34, 123-134.	1.1	8
18	Kinetic modeling of ZnOâ€rGO catalyzed degradation of methylene blue. International Journal of Chemical Kinetics, 2020, 52, 645-654.	1.6	21

Majid Muneer

#	Article	IF	CITATIONS
19	Photo Catalysis: An Effective Tool for Treatment of Dyes Contaminated Wastewater. , 2020, , 175-187.		0
20	Azadirachta indica leaves extract assisted green synthesis of Ag-TiO2 for degradation of Methylene blue and Rhodamine B dyes in aqueous medium. Green Processing and Synthesis, 2019, 8, 659-666.	3.4	40
21	Study of electrical, dielectric and magnetic properties of Dy-Co bi-substituted strontium hexaferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 4658-4664.	2.2	9
22	Synthesis and characterization of silver loaded alumina and evaluation of its photo catalytic activity on photo degradation of methylene blue dye. Chemical Engineering Research and Design, 2019, 148, 218-226.	5.6	39
23	A comparative sorption study of Cr3+ and Cr6+ using mango peels: kinetic, equilibrium and thermodynamic. Green Processing and Synthesis, 2019, 8, 337-347.	3.4	10
24	Ag-Co3O4: Synthesis, characterization and evaluation of its photo-catalytic activity towards degradation of rhodamine B dye in aqueous medium. Chinese Journal of Chemical Engineering, 2018, 26, 1264-1269.	3.5	41
25	Thermal Stability and Mechanical Properties of Organo-Soluble and Processable Polyimides for High-Temperature Materials. Polymer-Plastics Technology and Engineering, 2017, 56, 22-28.	1.9	9
26	Glucomannan based polyurethanes: A critical short review of recent advances and future perspectives. International Journal of Biological Macromolecules, 2016, 87, 229-236.	7.5	28
27	Excess molar volume and isentropic compressibility of monoethanolamine in aqueous system at temperatures from 298.15 to 318.15 K. Physics and Chemistry of Liquids, 2016, 54, 384-393.	1.2	4
28	Dyeing of gamma irradiated cotton using Direct Yellow 12 and Direct Yellow 27: improvement in colour strength and fastness properties. Cellulose, 2015, 22, 2095-2105.	4.9	62
29	Acoustical behavior of some amino acids in aqueous disodium citrate solutions over temperature range (298.15-313.15) K. Pakistan Journal of Pharmaceutical Sciences, 2015, 28, 1613-7.	0.2	0
30	Ecofriendly Dyeing of UV-Irradiated Cotton Using Extracts of Acacia nilotica Bark (Kikar) as Source of Quercetin. Asian Journal of Chemistry, 2014, 26, 830-834.	0.3	40