Geonhui Gwak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11280582/publications.pdf

Version: 2024-02-01

623734 794594 21 490 14 19 citations h-index g-index papers 21 21 21 481 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Analyzing hydriding performance in full-scale depleted uranium beds. Energy, 2020, 193, 116742.	8.8	7
2	Analyzing oxygen transport resistance and Pt particle growth effect in the cathode catalyst layer of polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2020, 45, 13414-13427.	7.1	35
3	Performance and Efficiency Analysis of an HT-PEMFC System with an Absorption Chiller for Tri-Generation Applications. Energies, 2019, 12, 905.	3.1	16
4	Multi-Scale and Multi-Dimensional Thermal Modeling of Lithium-Ion Batteries. Energies, 2019, 12, 374.	3.1	1
5	Studies of the methanol crossover and cell performance behaviors of high temperature-direct methanol fuel cells (HT-DMFCs). International Journal of Hydrogen Energy, 2018, 43, 13999-14011.	7.1	24
6	In-situ Measurements of Vanadium Crossover Diffusivities in All-Vanadium Redox Flow Batteries During Charge- Discharge Cycles. , 2018, , .		0
7	Thermal Modeling of Lithium-ion Batteries with LiFePO <inf>4</inf> Electrodes. , 2018, , .		1
8	Multi-dimensional modeling and large-scale simulation of hydrogen absorption/desorption phenomena in metal hydride vessels (MHVs). Fusion Engineering and Design, 2018, 130, 107-113.	1.9	5
9	Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions. International Journal of Hydrogen Energy, 2017, 42, 1736-1750.	7.1	44
10	Analysis of water film formation and low-humidity operation characteristics of a polymer electrolyte fuel cell (PEFC). International Journal of Hydrogen Energy, 2017, 42, 3731-3747.	7.1	21
11	Analyzing effects of volumetric expansion of uranium during hydrogen absorption. International Journal of Hydrogen Energy, 2017, 42, 3723-3730.	7.1	16
12	Numerical investigation of spatial variation of hydrophobicity in diffusion media along the through-plane direction in direct methanol fuel cells. International Journal of Hydrogen Energy, 2016, 41, 8277-8285.	7.1	3
13	Three-dimensional transient modeling of a non-aqueous electrolyte lithium-air battery. Electrochimica Acta, 2016, 201, 395-409.	5.2	27
14	A rapid start-up strategy for polymer electrolyte fuel cells at subzero temperatures based on control of the operating current density. International Journal of Hydrogen Energy, 2015, 40, 11989-11997.	7.1	46
15	Numerical comparison of heat-fin- and metal-foam-based hydrogen storage beds duringÂhydrogen charging process. International Journal of Hydrogen Energy, 2015, 40, 14540-14550.	7.1	48
16	Analyzing the effects of fluctuating methanol feed concentration in active-type direct methanol fuel cell (DMFC) systems. International Journal of Hydrogen Energy, 2015, 40, 5396-5407.	7.1	22
17	Three-dimensional modeling and simulation of hydrogen desorption in metal hydride hydrogen storage vessels. International Journal of Hydrogen Energy, 2015, 40, 14322-14330.	7.1	45
18	Effect of variation of hydrophobicity of anode diffusion media along the through-plane direction in direct methanol fuel cells. International Journal of Hydrogen Energy, 2014, 39, 1564-1570.	7.1	18

#	Article	IF	CITATION
19	Numerical investigation of cold-start behavior of polymer-electrolyte fuel-cells from subzero to normal operating temperatures – Effects of cell boundary and operating conditions. International Journal of Hydrogen Energy, 2014, 39, 21927-21937.	7.1	61
20	Effects of porous properties on cold-start behavior of polymer electrolyte fuel cells from sub-zero to normal operating temperatures. Scientific Reports, 2014, 4, 5770.	3.3	3
21	Development of an advanced MEA to use high-concentration methanol fuel in a direct methanol fuel cell system. International Journal of Hydrogen Energy, 2012, 37, 6285-6291.	7.1	47