
Patrick Sharrock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11280318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physical and chemical characterisation of crude meat and bone meal combustion residue: "waste or raw material?â€: Journal of Hazardous Materials, 2005, 121, 141-148.	6.5	170
2	Hydroxyapatite supported bimetallic cobalt and nickel catalysts for syngas production from dry reforming of methane. Applied Catalysis B: Environmental, 2018, 224, 310-321.	10.8	121
3	Role of Phosphate in the Remediation and Reuse of Heavy Metal Polluted Wastes and Sites. Waste and Biomass Valorization, 2010, 1, 163-174.	1.8	103
4	Beneficial use of meat and bone meal combustion residue: "an efficient low cost material to remove lead from aqueous effluent― Journal of Hazardous Materials, 2003, 101, 55-64.	6.5	87
5	Calcium phosphate stabilization of fly ash with chloride extraction. Waste Management, 2002, 22, 235-239.	3.7	78
6	Solvent composition of one-step self-etch adhesives and dentine wettability. Journal of Dentistry, 2011, 39, 30-39.	1.7	74
7	Synthesis of calcium hydroxyapatite from calcium carbonate and different orthophosphate sources: A comparative study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1080-1089.	1.7	60
8	Hydroxyapatite gel for the improved removal of Pb2+ ions from aqueous solution. Chemical Engineering Journal, 2013, 232, 128-138.	6.6	46
9	Stabilisation of heavy metal containing dusts by reaction with phosphoric acid: study of the reactivity of fly ash. Journal of Hazardous Materials, 2004, 116, 65-74.	6.5	44
10	Convenient conversion of calcium carbonate to hydroxyapatite at ambient pressure. Materials Science and Engineering C, 2009, 29, 771-773.	3.8	39
11	Hydroxyapatite starting from calcium carbonate and orthophosphoric acid: synthesis, characterization, and applications. Journal of Materials Science, 2014, 49, 4261-4269.	1.7	37
12	One-Step Synthesis of Calcium Hydroxyapatite from Calcium Carbonate and Orthophosphoric Acid under Moderate Conditions. Industrial & Engineering Chemistry Research, 2013, 52, 1439-1447.	1.8	35
13	Highly-efficient hydroxyapatite-supported nickel catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 2020, 45, 18502-18518.	3.8	35
14	Calcium phosphate based materials starting from calcium carbonate and orthophosphoric acid for the removal of lead(II) from an aqueous solution. Chemical Engineering Journal, 2014, 243, 280-288.	6.6	33
15	Catalytic transformation of carbon dioxide and methane into syngas over ruthenium and platinum supported hydroxyapatites. Applied Surface Science, 2016, 390, 141-156.	3.1	33
16	Macroporous calcium phosphate ceramic implants for sustained drug delivery. Materials Science and Engineering C, 2011, 31, 1352-1356.	3.8	32
17	Apatitic calcium phosphates: Synthesis, characterization and reactivity in the removal of lead(II) from aqueous solution. Chemical Engineering Journal, 2012, 198-199, 180-190.	6.6	30
18	The role of acrylophosphonic acid monomers in the formation of hybrid layers based on self-etch adhesives. Journal of Dentistry, 2007, 35, 302-308.	1.7	25

#	Article	IF	CITATIONS
19	Upgrading greenhouse gases (methane and carbon dioxide) into syngas using nickel-based catalysts. Fuel, 2018, 226, 195-203.	3.4	25
20	Modifications of the organic and mineral fractions of dental tissues following conditioning by self-etching adhesives. Journal of Dentistry, 2011, 39, 141-147.	1.7	23
21	Hydroxyapatite precipitation with Hydron Blue dye. Journal of Environmental Management, 2017, 203, 807-810.	3.8	22
22	Bioactive coatings obtained at room temperature with hydroxyapatite and polysiloxanes. Materials Letters, 2006, 60, 3192-3196.	1.3	21
23	Reaction of lead ions with hydroxylapatite granules. Chemical Papers, 2008, 62, .	1.0	21
24	Metal Ion Binding on Hydroxyapatite (Hap) and Study of the Velocity of Sedimentation. Procedia Engineering, 2012, 33, 377-384.	1.2	21
25	Carbonate-containing apatite (CAP) synthesis under moderate conditions starting from calcium carbonate and orthophosphoric acid. Materials Science and Engineering C, 2013, 33, 2971-2980.	3.8	21
26	Water permeability, hybrid layer long-term integrity and reaction mechanism of a two-step adhesive system. Journal of Dentistry, 2010, 38, 526-533.	1.7	20
27	Characterization of Thermochemical Inactivation of Asbestos Containing Wastes and Recycling the Mineral Residues in Cement Products. Waste and Biomass Valorization, 2011, 2, 169-181.	1.8	20
28	Thermal behavior of apatitic calcium phosphates synthesized from calcium carbonate and orthophosphoric acid or potassium dihydrogen orthophosphate. Journal of Thermal Analysis and Calorimetry, 2013, 112, 1145-1155.	2.0	18
29	Acrylophosphonic acid reactivity with calcium ions and biological apatite. Dental Materials, 2008, 24, 386-391.	1.6	17
30	Depletion of water molecules during ethanol wet-bonding with etch and rinse dental adhesives. Materials Science and Engineering C, 2013, 33, 21-27.	3.8	17
31	Characterization of sound human dentin particles of sub-millimeter size. Dental Materials, 2002, 18, 529-534.	1.6	16
32	Hazardous animal waste carcasses transformation into slow release fertilizers. Journal of Hazardous Materials, 2009, 167, 119-123.	6.5	16
33	Sorption behavior of Zn(II) ions on synthetic apatitic calcium phosphates. Applied Surface Science, 2015, 357, 1958-1966.	3.1	16
34	One-Step Synthesis of Sodium Trimetaphosphate (Na ₃ P ₃ O ₉) from Sodium Chloride and Orthophosphoric Acid. Industrial & Engineering Chemistry Research, 2012, 51, 3851-3854.	1.8	15
35	Spray-Dried Monocalcium Phosphate Monohydrate for Soluble Phosphate Fertilizer. Industrial & Engineering Chemistry Research, 2015, 54, 8043-8047.	1.8	15
36	Spectral and Electron Paramagnetic Resonance Investigations of Copper(II) Complexes of Linear-Chain Fatty Diacids. Bioinorganic Chemistry, 1978, 9, 3-21.	1.2	14

#	Article	IF	CITATIONS
37	Electrochemical micro-extraction of lead (II) at a hydroxylapatite modified platinum electrode. Electrochemistry Communications, 2006, 8, 1544-1548.	2.3	14
38	Synthesis, characterization, and thermo-mechanical properties of copper-loaded apatitic calcium phosphates. Composite Interfaces, 2013, 20, 647-660.	1.3	14
39	A Comparative Study of Hydroxyapatite―and Aluminaâ€Based Catalysts in Dry Reforming of Methane. Chemical Engineering and Technology, 2020, 43, 698-704.	0.9	14
40	[5-Leucine]- and [5-methionine]enkephaline-copper(II) complexation under physiological conditions. Inorganic Chemistry, 1982, 21, 1846-1854.	1.9	12
41	HEMA reactivity with demineralized dentin. Journal of Dentistry, 2010, 38, 331-335.	1.7	12
42	Surface treatments on quartz fiber post: influence on adhesion and flexural properties. American Journal of Dentistry, 2007, 20, 375-9.	0.1	12
43	Novel one-step synthesis and characterization of bone-like carbonated apatite from calcium carbonate, calcium hydroxide and orthophosphoric acid as economical starting materials. Materials Research Bulletin, 2014, 51, 236-243.	2.7	11
44	Laboratory scale study of an industrial phosphate and thermal treatment for polluted dredged sediments. International Journal of Sediment Research, 2012, 27, 538-546.	1.8	10
45	Recrystallization of Industrial Triple Super Phosphate Powder. Industrial & Engineering Chemistry Research, 2014, 53, 14446-14450.	1.8	10
46	Valorization of Calcium Carbonate-Based Solid Wastes for the Treatment of Hydrogen Sulfide from the Gas Phase. Industrial & Engineering Chemistry Research, 2015, 54, 4915-4922.	1.8	10
47	Performance of a universal adhesive on etched and non-etched surfaces: Do the results match the expectations?. Materials Science and Engineering C, 2016, 66, 199-205.	3.8	10
48	Hydroxyapatite-based sorbents: elaboration, characterization and application for the removal of catechol from the aqueous phase. Environmental Technology (United Kingdom), 2017, 38, 2611-2620.	1.2	10
49	SERINE, THREONINE AND $\hat{1}$ ±-HYDROXYAMINE COORDINATION TO CUPRIC IONS BY HYDROXYL-OXYGEN-METAL BONDS. Journal of Coordination Chemistry, 1981, 11, 117-124.	0.8	9
50	Etude du succinate de chrome(II) dihydraté, [Cr(C4H4O4)•H2O]2•2H2O. Canadian Journal of Chemistry, 1973, 51, 2963-2967.	0.6	8
51	Chrysotile asbestos fibres from Quebec: electron magnetic resonance identification. Geochimica Et Cosmochimica Acta, 1982, 46, 1311-1315.	1.6	8
52	Release of aqueous calcium and phosphate from human dental enamel following administration of self-etching adhesives. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 745-759.	1.9	8
53	Lead electrocapture on hydroxyapatite coated electrodes. Chemosphere, 2005, 60, 1157-1161.	4.2	8
54	Metalâ€peptide interactions: enkephalin rigidifications. International Journal of Peptide and Protein Research, 1982, 20, 380-386.	0.1	8

#	Article	IF	CITATIONS
55	Highly Porous Calcium Hydroxyapatite-based Composites for Air Pollution Control. Procedia Engineering, 2014, 83, 394-402.	1.2	8
56	Carbonated hydroxyapatite starting from calcite and different orthophosphates under moderate hydrothermal conditions: Synthesis and surface reactivity in simulated body fluid. Materials Research Bulletin, 2014, 60, 292-299.	2.7	8
57	Synthesis of carbon nanotubes/hydroxyapatite composites using catalytic methane cracking. Composite Interfaces, 2015, 22, 673-687.	1.3	8
58	Etude des Succinates Simples et Complexes de Cobalt(II). Canadian Journal of Chemistry, 1975, 53, 98-105.	0.6	7
59	Mixed aldehyde condensations on copper glycinate. Polyhedron, 1983, 2, 111-114.	1.0	7
60	Critical Surface Energy of Composite Cement Containing MDP (10-Methacryloyloxydecyl Dihydrogen) Tj ETQqO 0 2012, 23, 543-554.	0 rgBT /C 1.9	verlock 10 T [.] 7
61	Fluid flow through dentin–self-etch resin interface during long term in vitro aging. Materials Science and Engineering C, 2013, 33, 3711-3715.	3.8	7
62	Alkali polyphosphates as new potential materials for thermal energy storage. Solar Energy, 2017, 157, 277-283.	2.9	7
63	EPR non-detectable copper in pyridoxal biogenic amine schiff base complexes. Biochemical and Biophysical Research Communications, 1979, 86, 428-433.	1.0	5
64	Synthesis of threonine and separation from its copper complex on an ion exchange resin. Journal of Inorganic and Nuclear Chemistry, 1979, 41, 1087-1088.	0.5	4
65	LINEAR CHAIN FATTY DIACIDS: COPPER(II) COMPOUNDS. Journal of Coordination Chemistry, 1985, 14, 65-72.	0.8	4
66	Metal-doped apatitic calcium phosphates: preparation, characterization, and reactivity in the removal of hydrogen sulfide from gas phase. Composite Interfaces, 2015, 22, 503-515.	1.3	4
67	A comparative study of cupric complexes of dicarboxylic acids and acid-amides ligands. Polyhedron, 1983, 2, 823-828.	1.0	3
68	Release of anthracyclines adsorbed on copper-treated hydroxylapatites. Journal of Biomedical Materials Research Part B, 2004, 70B, 103-105.	3.0	3
69	A New Route for the Synthesis of Alkali Polyphosphate from Economical Starting Materials: Preparation and Characterization of Sodium Cyclotriphosphate. Phosphorus, Sulfur and Silicon and the Related Elements, 2012, 187, 112-120.	0.8	3
70	Valorization of calcium carbonate-based solid wastes for the treatment of hydrogen sulfide in a semi-continuous reactor. Chemical Engineering Journal, 2019, 360, 1167-1176.	6.6	3
71	An inexpensive technique for obtaining low temperature EPR spectra. Journal of Magnetic Resonance, 1979, 33, 465-467.	0.5	2
72	A New Route for the Synthesis of Alkali Polyphosphate from Economical Starting Materials: Part II—Influence of Reaction Conditions. Phosphorus, Sulfur and Silicon and the Related Elements, 2012, 187, 1132-1140.	0.8	2

#	Article	IF	CITATIONS
73	Binary and ternary alkali polyphosphates (MPO3, M = Li, Na, K) for thermal energy storage. Journal of Thermal Analysis and Calorimetry, 2021, 146, 2027-2033.	2.0	2
74	Composite Material with Calcium Sulfate and Calcium Phosphate for Heavy Metals Retention. Procedia Engineering, 2014, 83, 403-406.	1.2	1
75	Magnetic interactions in spin-labelled glycine complexee to cupric ions. Transition Metal Chemistry, 1986, 11, 418-422.	0.7	0
76	Adhesion of a quartz fibre post to a composite resin core: influence of bonding agents and their curing mode. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 853-861.	1.9	0
77	Sodium Dihydrogen Phosphate Starting From Sodium Chloride and Orthophosphoric Acid Via Cation Resin Exchange. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1743-1748.	0.8	0