Wael Eldahshan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11277488/publications.pdf

Version: 2024-02-01

		759233	940533	
17	931	12	16	
papers	citations	h-index	g-index	
1.0	1.0	1.0	1.671	
18	18	18	1671	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Preclinical investigation of Pegylated arginase 1 as a treatment for retina and brain injury. Experimental Neurology, 2022, 348, 113923.	4.1	10
2	Delayed Administration of Angiotensin Receptor (AT2R) Agonist C21 Improves Survival and Preserves Sensorimotor Outcomes in Female Diabetic Rats Post-Stroke through Modulation of Microglial Activation. International Journal of Molecular Sciences, 2021, 22, 1356.	4.1	16
3	Stimulation of angiotensin II receptor 2 preserves cognitive function and is associated with an enhanced cerebral vascular density after stroke. Vascular Pharmacology, 2021, 141, 106904.	2.1	6
4	Delayed Administration of Angiotensin II Type 2 Receptor (AT2R) Agonist Compound 21 Prevents the Development of Post-stroke Cognitive Impairment in Diabetes Through the Modulation of Microglia Polarization. Translational Stroke Research, 2020, 11, 762-775.	4.2	47
5	Stroke promotes the development of brain atrophy and delayed cell death in hypertensive rats. Scientific Reports, 2020, 10, 20233.	3.3	17
6	COVID-19-Related Stroke. Translational Stroke Research, 2020, 11, 322-325.	4.2	315
7	Arginase Pathway in Acute Retina and Brain Injury: Therapeutic Opportunities and Unexplored Avenues. Frontiers in Pharmacology, 2020, $11,277$.	3.5	22
8	Critical role of arginase 2 in obesityâ€induced metabolic dysregulation in female mice: Implication of macrophage inflammatory response. FASEB Journal, 2020, 34, 1-1.	0.5	0
9	Inflammation within the neurovascular unit: Focus on microglia for stroke injury and recovery. Pharmacological Research, 2019, 147, 104349.	7.1	74
10	Angiotensin II type 2 receptor stimulation with compound 21 improves neurological function after stroke in female rats: a pilot study. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1192-H1201.	3.2	19
11	Dose–response, therapeutic time-window and tPA-combinatorial efficacy of compound 21: A randomized, blinded preclinical trial in a rat model of thromboembolic stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1635-1647.	4.3	21
12	Within the Brain: The Renin Angiotensin System. International Journal of Molecular Sciences, 2018, 19, 876.	4.1	235
13	Silencing VEGF-B Diminishes the Neuroprotective Effect of Candesartan Treatment After Experimental Focal Cerebral Ischemia. Neurochemical Research, 2018, 43, 1869-1878.	3.3	8
14	RAS modulation prevents progressive cognitive impairment after experimental stroke: a randomized, blinded preclinical trial. Journal of Neuroinflammation, 2018, 15, 229.	7.2	47
15	Brain-Derived Neurotrophic Factor Knockdown Blocks the Angiogenic and Protective Effects of Angiotensin Modulation After Experimental Stroke. Molecular Neurobiology, 2017, 54, 661-670.	4.0	40
16	Suppression of Akt $1-\hat{l}^2$ -catenin pathway in advanced prostate cancer promotes TGF \hat{l}^21 -mediated epithelial to mesenchymal transition and metastasis. Cancer Letters, 2017, 402, 177-189.	7.2	28
17	Deletion of TXNIP Mitigates High-Fat Diet-Impaired Angiogenesis and Prevents Inflammation in a Mouse Model of Critical Limb Ischemia. Antioxidants, 2017, 6, 47.	5.1	26