
Nina Elisabeth Nagy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11276220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induced responses to pathogen infection in Norway spruce phloem: changes in polyphenolic parenchyma cells, chalcone synthase transcript levels and peroxidase activity. Tree Physiology, 2004, 24, 505-515.	3.1	88
2	Drought affects tracheid structure, dehydrin expression, and above- and belowground growth in 5-year-old Norway spruce. Plant and Soil, 2013, 366, 305-320.	3.7	51
3	Localization of Phenolics in Phloem Parenchyma Cells of Norway Spruce (<i>Picea abies</i>). ChemBioChem, 2012, 13, 2707-2713.	2.6	49
4	Effects of Rhizoctonia infection and drought on peroxidase and chitinase activity in Norway spruce (Picea abies). Physiologia Plantarum, 2004, 120, 465-473.	5.2	43
5	Anatomical-based defense responses of Scots pine (Pinus sylvestris) stems to two fungal pathogens. Tree Physiology, 2006, 26, 159-167.	3.1	34
6	Cytological and enzymatic responses to aluminium stress in root tips of Norway spruce seedlings. New Phytologist, 2004, 163, 595-607.	7.3	33
7	Local and systemic stress responses in Norway spruce: Similarities in gene expression between a compatible pathogen interaction and drought stress. Physiological and Molecular Plant Pathology, 2007, 70, 161-173.	2.5	32
8	Effect of thinning on anatomical adaptations of Norway spruce needles. Tree Physiology, 2011, 31, 1103-1113.	3.1	30
9	The putative gymnosperm plant defensin polypeptide (SPI1) accumulates after seed germination, is not readily released, and the SPI1 levels are reduced in Pythium dimorphum-infected spruce roots. Plant Molecular Biology, 2003, 52, 291-302.	3.9	26
10	Indications of heightened constitutive or primed host response affecting the lignin pathway transcripts and phenolics in mature Norway spruce clones. Tree Physiology, 2012, 32, 1137-1147.	3.1	20
11	Effects of prolonged drought on the anatomy of sun and shade needles in young Norway spruce trees. Ecology and Evolution, 2015, 5, 4989-4998.	1.9	18
12	Effects of different light conditions on the xylem structure of Norway spruce needles. Trees - Structure and Function, 2012, 26, 1079-1089.	1.9	16
13	The Pathogenic White-Rot Fungus <i>Heterobasidion parviporum</i> Responds to Spruce Xylem Defense by Enhanced Production of Oxalic Acid. Molecular Plant-Microbe Interactions, 2012, 25, 1450-1458.	2.6	15
14	Xylem defense wood of Norway spruce compromised by the pathogenic white-rot fungus Heterobasidion parviporum shows a prolonged period of selective decay. Planta, 2012, 236, 1125-1133.	3.2	12
15	Callus cultures and bark from Norway spruce clones show similar cellular features and relative resistance to fungal pathogens. Trees - Structure and Function, 2005, 19, 695-703.	1.9	11
16	Influence of wood durability on the suppressive effect of increased temperature on wood decay by the brown-rot fungus Postia placenta. Holzforschung, 2014, 68, 123-131.	1.9	8
17	Altered light conditions following thinning affect xylem structure and potential hydraulic conductivity of Norway spruce shoots. European Journal of Forest Research, 2014, 133, 111-120.	2.5	5
18	Patterns and roles of lignan and terpenoid accumulation in the reaction zone compartmentalizing pathogen-infected heartwood of Norway spruce. Planta, 2022, 255, 63.	3.2	5