Hailing Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1127524/publications.pdf

Version: 2024-02-01

		236612	377514
32	12,558	25	34
papers	citations	h-index	g-index
38	38	38	8822
30	30	30	0022
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	N6-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell, 2015, 161, 1388-1399.	13.5	2,446
2	Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 2018, 20, 285-295.	4.6	1,650
3	YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Research, 2017, 27, 315-328.	5.7	1,220
4	Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Molecular Cell, 2019, 74, 640-650.	4.5	1,096
5	m 6 A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Reports, 2017, 18, 2622-2634.	2.9	1,026
6	METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m6A Modification. Cell Stem Cell, 2018, 22, 191-205.e9.	5.2	749
7	Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Research, 2017, 27, 1115-1127.	5.7	696
8	Differential m6A, m6Am, and m1A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. Molecular Cell, 2018, 71, 973-985.e5.	4.5	506
9	m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature, 2017, 542, 475-478.	13.7	437
10	N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nature Structural and Molecular Biology, 2017, 24, 870-878.	3.6	432
11	m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature, 2018, 563, 249-253.	13.7	354
12	Regulation of Co-transcriptional Pre-mRNA Splicing by m6A through the Low-Complexity Protein hnRNPG. Molecular Cell, 2019, 76, 70-81.e9.	4.5	248
13	Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biology, 2018, 19, 69.	3.8	216
14	m ⁶ A mRNA methylation controls autophagy and adipogenesis by targeting <i>Atg5</i> and <i>Atg7</i> . Autophagy, 2020, 16, 1221-1235.	4.3	213
15	Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Research, 2018, 28, 904-917.	5.7	203
16	YTHDF3 Induces the Translation of m6A-Enriched Gene Transcripts to Promote Breast Cancer Brain Metastasis. Cancer Cell, 2020, 38, 857-871.e7.	7.7	203
17	EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nature Communications, 2021, 12, 177.	5.8	160
18	Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability. Nature Genetics, 2020, 52, 939-949.	9.4	113

#	Article	IF	Citations
19	Mettl14 Is Essential for Epitranscriptomic Regulation of Striatal Function and Learning. Neuron, 2018, 99, 283-292.e5.	3.8	110
20	Epitranscriptomic influences on development and disease. Genome Biology, 2017, 18, 197.	3.8	97
21	The RNA-binding protein FMRP facilitates the nuclear export of N6-methyladenosine–containing mRNAs. Journal of Biological Chemistry, 2019, 294, 19889-19895.	1.6	84
22	Design, Construction, and Characterization of a Set of Biosensors for Aromatic Compounds. ACS Synthetic Biology, 2014, 3, 1011-1014.	1.9	46
23	mRNA m6A plays opposite role in regulating UCP2 and PNPLA2 protein expression in adipocytes. International Journal of Obesity, 2018, 42, 1912-1924.	1.6	38
24	Transcriptome-wide reprogramming of N6-methyladenosine modification by the mouse microbiome. Cell Research, 2019, 29, 167-170.	5.7	38
25	Conformational Flexibility of a Short Loop near the Active Site of the SARS-3CLpro is Essential to Maintain Catalytic Activity. Scientific Reports, 2016, 6, 20918.	1.6	20
26	Single base resolution mapping of 2′-O-methylation sites in human mRNA and in 3′ terminal ends of small RNAs. Methods, 2019, 156, 85-90.	1.9	20
27	Molecular biology of oral cavity squamous cell carcinoma. Oral Oncology, 2020, 102, 104552.	0.8	20
28	Exposure to constant light impairs cognition with FTO inhibition and m6A-dependent TrÎB repression in mouse hippocampus. Environmental Pollution, 2021, 283, 117037.	3.7	15
29	Chemically Modified mocRNAs for Highly Efficient Protein Expression in Mammalian Cells. ACS Chemical Biology, 2022, 17, 3352-3366.	1.6	8
30	Phasing Gene Expression: mRNA N6-Methyladenosine Regulates Temporal Progression of Mammalian Cortical Neurogenesis. Biochemistry, 2018, 57, 1055-1056.	1.2	5
31	A glance at N6-methyladenosine in transcript isoforms. Nature Methods, 2016, 13, 624-625.	9.0	1
32	m 6 A facilitates hippocampusâ€dependent learning and memory through Ythdf1. FASEB Journal, 2018, 32, 787.6.	0.2	1