
Georg Auburger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1127468/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Hereditary Early-Onset Parkinson's Disease Caused by Mutations in <i>PINK1</i> . Science, 2004, 304, 1158-1160.	12.6	3,060
3	The ubiquitin pathway in Parkinson's disease. Nature, 1998, 395, 451-452.	27.8	1,518
4	OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nature Genetics, 2000, 26, 211-215.	21.4	1,169
5	Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature, 2010, 466, 1069-1075.	27.8	1,117
6	Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genetics, 1996, 14, 269-276.	21.4	1,092
7	Loss-of-Function of Human PINK1 Results in Mitochondrial Pathology and Can Be Rescued by Parkin. Journal of Neuroscience, 2007, 27, 12413-12418.	3.6	466
8	Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature, 2017, 544, 367-371.	27.8	422
9	Parkinson Phenotype in Aged PINK1-Deficient Mice Is Accompanied by Progressive Mitochondrial Dysfunction in Absence of Neurodegeneration. PLoS ONE, 2009, 4, e5777.	2.5	305
10	Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Progress in Neurobiology, 2013, 104, 38-66.	5.7	283
11	Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nature Genetics, 2010, 42, 420-425.	21.4	262
12	The Brainstem Pathologies of Parkinson's Disease and Dementia with Lewy Bodies. Brain Pathology, 2015, 25, 121-135.	4.1	214
13	Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. Journal of Cell Science, 2010, 123, 917-926.	2.0	212
14	Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathologica, 1999, 97, 306-310.	7.7	210
15	An Isoform of Ataxinâ€3 Accumulates in the Nucleus of Neuronal Cells in Affected Brain Regions of SCA3 Patients. Brain Pathology, 1998, 8, 669-679.	4.1	189
16	Transgenic mice expressing mutant A53T human alpha-synuclein show neuronal dysfunction in the absence of aggregate formation. Molecular and Cellular Neurosciences, 2003, 24, 419-429.	2.2	189
17	Spinocerebellar ataxia 2 (SCA2). Cerebellum, 2008, 7, 115-124.	2.5	182
18	Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiology of Disease, 2007, 25, 401-411.	4.4	180

#	Article	IF	CITATIONS
19	PINK1 and Parkin Control Localized Translation of Respiratory Chain Component mRNAs on Mitochondria Outer Membrane. Cell Metabolism, 2015, 21, 95-108.	16.2	175
20	Developmental changes of nerve growth factor and its mRNA in the rat hippocampus: Comparison with choline acetyltransferase. Developmental Biology, 1987, 120, 322-328.	2.0	159
21	Loss of mitochondrial peptidase Clpp leads to infertility, hearing loss plus growth retardation via accumulation of CLPX, mtDNA and inflammatory factors. Human Molecular Genetics, 2013, 22, 4871-4887.	2.9	151
22	Mutations in <i>ClZ1</i> cause adult onset primary cervical dystonia. Annals of Neurology, 2012, 71, 458-469.	5.3	128
23	Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Human Molecular Genetics, 2011, 20, 1697-1700.	2.9	127
24	Primary Skin Fibroblasts as a Model of Parkinson's Disease. Molecular Neurobiology, 2012, 46, 20-27.	4.0	121
25	A53T-Alpha-Synuclein Overexpression Impairs Dopamine Signaling and Striatal Synaptic Plasticity in Old Mice. PLoS ONE, 2010, 5, e11464.	2.5	119
26	Mutant α-Synuclein Enhances Firing Frequencies in Dopamine Substantia Nigra Neurons by Oxidative Impairment of A-Type Potassium Channels. Journal of Neuroscience, 2014, 34, 13586-13599.	3.6	113
27	Insulin receptor and lipid metabolism pathology in ataxin-2 knock-out mice. Human Molecular Genetics, 2008, 17, 1465-1481.	2.9	107
28	Clinical and positron emission tomography of Parkinson's disease caused by <i>LRRK2</i> . Annals of Neurology, 2005, 57, 453-456.	5.3	105
29	Common variant near the endothelin receptor type A (<i>EDNRA</i>) gene is associated with intracranial aneurysm risk. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19707-19712.	7.1	100
30	SCA2 trinucleotide expansion in German SCA patients. Neurogenetics, 1997, 1, 59-64.	1.4	98
31	A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. Journal of Medical Genetics, 2012, 49, 721-726.	3.2	94
32	Saccade velocity is controlled by polyglutamine size in spinocerebellar ataxia 2. Annals of Neurology, 2004, 56, 444-447.	5.3	88
33	Ataxin-2 associates with the endocytosis complex and affects EGF receptor trafficking. Cellular Signalling, 2008, 20, 1725-1739.	3.6	87
34	Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1558-1569.	3.8	86
35	Exacerbated synucleinopathy in mice expressing A53T SNCA on a Snca null background. Neurobiology of Aging, 2005, 26, 25-35.	3.1	82
36	Frequency of familial inheritance among 488 index patients with idiopathic focal dystonia and clinical variability in a large family. Movement Disorders, 1997, 12, 1000-1006.	3.9	81

#	Article	IF	CITATIONS
37	Parkinson patient fibroblasts show increased alpha-synuclein expression. Experimental Neurology, 2008, 212, 307-313.	4.1	78
38	Loss of mitochondrial protease ClpP protects mice from dietâ€induced obesity and insulin resistance. EMBO Reports, 2018, 19, .	4.5	75
39	Alpha-synuclein deficiency leads to increased glyoxalase I expression and glycation stress. Cellular and Molecular Life Sciences, 2011, 68, 721-733.	5.4	73
40	Ataxin-2 associates with rough endoplasmic reticulum. Experimental Neurology, 2009, 215, 110-118.	4.1	72
41	Subthalamicâ€ŧhalamic DBS in a case with spinocerebellar ataxia type 2 and severe tremor—A unusual clinical benefit. Movement Disorders, 2007, 22, 732-735.	3.9	71
42	Ataxin-2 (Atxn2)-Knock-Out Mice Show Branched Chain Amino Acids and Fatty Acids Pathway Alterations. Molecular and Cellular Proteomics, 2016, 15, 1728-1739.	3.8	70
43	ATXN2-CAG42 Sequesters PABPC1 into Insolubility and Induces FBXW8 in Cerebellum of Old Ataxic Knock-In Mice. PLoS Genetics, 2012, 8, e1002920.	3.5	68
44	The modulation of Amyotrophic Lateral Sclerosis risk by Ataxin-2 intermediate polyglutamine expansions is a specific effect. Neurobiology of Disease, 2012, 45, 356-361.	4.4	66
45	Spinocerebellar ataxia type 2. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 103, 423-436.	1.8	63
46	Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. Journal of Neuroinflammation, 2017, 14, 154.	7.2	63
47	Spinocerebellar Ataxia Type 3 (SCA3): Thalamic Neurodegeneration Occurs Independently from Thalamic Ataxin-3 Immunopositive Neuronal Intranuclear Inclusions. Brain Pathology, 2006, 16, 218-227.	4.1	61
48	12q24 locus association with type 1 diabetes: <i>SH2B3</i> or <i>ATXN2</i> ?. World Journal of Diabetes, 2014, 5, 316.	3.5	58
49	His1069Cln and six novel Wilson disease mutations: analysis of relevance for early diagnosis and phenotype. European Journal of Human Genetics, 1998, 6, 616-623.	2.8	56
50	Genomewide Scan and Fine-Mapping Linkage Studies in Four European Samples with Bipolar Affective Disorder Suggest a New Susceptibility Locus on Chromosome 1p35-p36 and Provides Further Evidence of Loci on Chromosome 4q31 and 6q24. American Journal of Human Genetics, 2005, 77, 1102-1111.	6.2	56
51	No parkinsonism in SCA2 and SCA3 despite severe neurodegeneration of the dopaminergic substantia nigra. Brain, 2015, 138, 3316-3326.	7.6	54
52	Elastin Polymorphism Haplotype and Intracranial Aneurysms Are Not Associated in Central Europe. Stroke, 2003, 34, 1207-1211.	2.0	53
53	Consistent affection of the central somatosensory system in spinocerebellar ataxia type 2 and type 3 and its significance for clinical symptoms and rehabilitative therapy. Brain Research Reviews, 2007, 53, 235-249.	9.0	53
54	Sleep Disorders in Spinocerebellar Ataxia Type 2 Patients. Neurodegenerative Diseases, 2011, 8, 447-454.	1.4	53

#	Article	IF	CITATIONS
55	Potentiation of neurotoxicity in double-mutant mice with Pink1 ablation and A53T-SNCA overexpression. Human Molecular Genetics, 2015, 24, 1061-1076.	2.9	53
56	<scp>H</scp> untington's <scp>D</scp> isease (<scp>HD</scp>): Degeneration of Select Nuclei, Widespread Occurrence of Neuronal Nuclear and Axonal Inclusions in the Brainstem. Brain Pathology, 2014, 24, 247-260.	4.1	51
57	Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate. Neurogenetics, 2015, 16, 181-192.	1.4	51
58	Efficient Prevention of Neurodegenerative Diseases by Depletion of Starvation Response Factor Ataxin-2. Trends in Neurosciences, 2017, 40, 507-516.	8.6	51
59	The First Genomewide Interaction and Locus-Heterogeneity Linkage Scan in Bipolar Affective Disorder: Strong Evidence of Epistatic Effects between Loci on Chromosomes 2q and 6q. American Journal of Human Genetics, 2007, 81, 974-986.	6.2	49
60	Atxn2 Knockout and CAG42-Knock-in Cerebellum Shows Similarly Dysregulated Expression in Calcium Homeostasis Pathway. Cerebellum, 2017, 16, 68-81.	2.5	49
61	Dysregulated expression of lipid storage and membrane dynamics factors in Tia1 knockout mouse nervous tissue. Neurogenetics, 2014, 15, 135-144.	1.4	47
62	Early onset autosomal dominant spastic paraplegia caused by novel mutations in SPG3A. Neurogenetics, 2004, 5, 239-243.	1.4	45
63	Brain atrophy measures in preclinical and manifest spinocerebellar ataxia type 2. Annals of Clinical and Translational Neurology, 2018, 5, 128-137.	3.7	45
64	ATXN2 and Its Neighbouring Gene SH2B3 Are Associated with Increased ALS Risk in the Turkish Population. PLoS ONE, 2012, 7, e42956.	2.5	43
65	Ataxin-2 Modulates the Levels of Grb2 and Src but Not Ras Signaling. Journal of Molecular Neuroscience, 2013, 51, 68-81.	2.3	41
66	Prodromal Spinocerebellar Ataxia Type 2 Subjects Have Quantifiable Gait and Postural Sway Deficits. Movement Disorders, 2021, 36, 471-480.	3.9	40
67	Prism adaptation in spinocerebellar ataxia type 2. Neuropsychologia, 2007, 45, 2692-2698.	1.6	39
68	Spinocerebellar ataxia type 2: Measures of saccade changes improve power for clinical trials. Movement Disorders, 2016, 31, 570-578.	3.9	39
69	Loss of PINK1 Impairs Stress-Induced Autophagy and Cell Survival. PLoS ONE, 2014, 9, e95288.	2.5	39
70	Mechanisms underlying altered striatal synaptic plasticity in old A53T-α synuclein overexpressing mice. Neurobiology of Aging, 2012, 33, 1792-1799.	3.1	37
71	On the distribution of intranuclear and cytoplasmic aggregates in the brainstem of patients with spinocerebellar ataxia type 2 and 3. Brain Pathology, 2017, 27, 345-355.	4.1	36
72	Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders. Molecular Psychiatry, 2021, 26, 1286-1298.	7.9	33

#	Article	IF	CITATIONS
73	The mitochondrial kinase PINK1, stress response and Parkinson's disease. Journal of Bioenergetics and Biomembranes, 2009, 41, 481-486.	2.3	32
74	A53T-alpha-synuclein-overexpression in the mouse nigrostriatal pathway leads to early increase of 14-3-3 epsilon and late increase of GFAP. Journal of Neural Transmission, 2012, 119, 297-312.	2.8	30
75	Loss of lysosome-associated membrane protein 3 (LAMP3) enhances cellular vulnerability against proteasomal inhibition. European Journal of Cell Biology, 2015, 94, 148-161.	3.6	29
76	Search for SCA2 blood RNA biomarkers highlights Ataxin-2 as strong modifier of the mitochondrial factor PINK1 levels. Neurobiology of Disease, 2016, 96, 115-126.	4.4	29
77	Early corticospinal tract damage in prodromal SCA2 revealed by EEG-EMG and EMG-EMG coherence. Clinical Neurophysiology, 2017, 128, 2493-2502.	1.5	29
78	Abnormal corticospinal tract function and motor cortex excitability in non-ataxic SCA2 mutation carriers: A TMS study. Clinical Neurophysiology, 2016, 127, 2713-2719.	1.5	27
79	LRRK2 Expression Is Deregulated in Fibroblasts and Neurons from Parkinson Patients with Mutations in PINK1. Molecular Neurobiology, 2018, 55, 506-516.	4.0	27
80	Loss of Mitochondrial Protease CLPP Activates Type I IFN Responses through the Mitochondrial DNA–cGAS–STING Signaling Axis. Journal of Immunology, 2021, 206, 1890-1900.	0.8	27
81	Mitochondrial translation initiation factor 3 gene polymorphism associated with Parkinson's disease. Neuroscience Letters, 2007, 414, 126-129.	2.1	26
82	Saccadic latency is prolonged in Spinocerebellar Ataxia type 2 and correlates with the frontal-executive dysfunctions. Journal of the Neurological Sciences, 2011, 306, 103-107.	0.6	26
83	Spinocerebellar Ataxia Type 2 (SCA2): Identification of Early Brain Degeneration in One Monozygous Twin in the Initial Disease Stage. Cerebellum, 2011, 10, 245-253.	2.5	26
84	Impact of Ataxin-2 knock out on circadian locomotor behavior and PER immunoreaction in the SCN of mice. Chronobiology International, 2017, 34, 129-137.	2.0	25
85	High Glucosylceramides and Low Anandamide Contribute to Sensory Loss and Pain in Parkinson's Disease. Movement Disorders, 2020, 35, 1822-1833.	3.9	25
86	Striatal Dopamine Transmission Is Subtly Modified in Human A53Tα-Synuclein Overexpressing Mice. PLoS ONE, 2012, 7, e36397.	2.5	25
87	Generation of an Atxn2-CAG100 knock-in mouse reveals N-acetylaspartate production deficit due to early Nat8l dysregulation. Neurobiology of Disease, 2019, 132, 104559.	4.4	24
88	Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression. Neurobiology of Disease, 2021, 152, 105289.	4.4	24
89	Failure to Find α-Synuclein Gene Dosage Changes in 190 Patients With Familial Parkinson Disease. Archives of Neurology, 2005, 62, 96.	4.5	23
90	Quality Assessment of Whole Genome Mapping Data in the Refined Familial Spastic Paraplegia Interval on Chromosome 14q. Genome Research, 1998, 8, 1216-1227.	5.5	22

#	Article	IF	CITATIONS
91	Regulation of mRNA Translation by MID1: A Common Mechanism of Expanded CAG Repeat RNAs. Frontiers in Cellular Neuroscience, 2016, 10, 226.	3.7	22
92	Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes. Journal of Proteome Research, 2017, 16, 504-515.	3.7	22
93	Sensory neuropathy and nociception in rodent models of Parkinson's disease. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	22
94	Corticomuscular Coherence: a Novel Tool to Assess the Pyramidal Tract Dysfunction in Spinocerebellar Ataxia Type 2. Cerebellum, 2017, 16, 602-606.	2.5	21
95	Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium homeostasis factors ATP1A2, Hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons. Neurobiology of Disease, 2019, 127, 114-130.	4.4	21
96	Saccade Velocity as a Surrogate Disease Marker in Spinocerebellar Ataxia Type 2. Annals of the New York Academy of Sciences, 2005, 1039, 524-527.	3.8	20
97	Complexin-1 and Foxp1 Expression Changes Are Novel Brain Effects of Alpha-Synuclein Pathology. Molecular Neurobiology, 2015, 52, 57-63.	4.0	20
98	Blood RNA biomarkers in prodromal PARK4 and REM sleep behavior disorder show role of complexin-1 loss for risk of Parkinson's disease. DMM Disease Models and Mechanisms, 2017, 10, 619-631.	2.4	20
99	Mitochondrial Acetylation and Genetic Models of Parkinson's Disease. Progress in Molecular Biology and Translational Science, 2014, 127, 155-182.	1.7	19
100	Impaired Photic Entrainment of Spontaneous Locomotor Activity in Mice Overexpressing Human Mutant α-Synuclein. International Journal of Molecular Sciences, 2018, 19, 1651.	4.1	19
101	In Human and Mouse Spino-Cerebellar Tissue, Ataxin-2 Expansion Affects Ceramide-Sphingomyelin Metabolism. International Journal of Molecular Sciences, 2019, 20, 5854.	4.1	19
102	Both Ubiquitin Ligases FBXW8 and PARK2 Are Sequestrated into Insolubility by ATXN2 PolyQ Expansions, but Only FBXW8 Expression Is Dysregulated. PLoS ONE, 2015, 10, e0121089.	2.5	18
103	<scp>C</scp> entral motor conduction time as prodromal biomarker in spinocerebellar ataxia type 2. Movement Disorders, 2016, 31, 603-604.	3.9	18
104	The role of glyoxalases for sugar stress and aging, with relevance for dyskinesia, anxiety, dementia and Parkinson's disease. Aging, 2011, 3, 5-9.	3.1	17
105	Mutations in the Lysyl Oxidase Gene Not Associated with Intracranial Aneurysm in Central European Families. Cerebrovascular Diseases, 2004, 18, 189-193.	1.7	16
106	Subthalamic Lesion or Levodopa Treatment Rescues Giant GABAergic Currents of PINK1-Deficient Striatum. Journal of Neuroscience, 2012, 32, 18047-18053.	3.6	16
107	A Genetic Mouse Model of Parkinson's Disease Shows Involuntary Movements and Increased Postsynaptic Sensitivity to Apomorphine. Molecular Neurobiology, 2015, 52, 1152-1164.	4.0	16
108	Progression of corticospinal tract dysfunction in pre-ataxic spinocerebellar ataxia type 2: A two-years follow-up TMS study. Clinical Neurophysiology, 2018, 129, 895-900.	1.5	16

#	Article	IF	CITATIONS
109	Solving a 50 year mystery of a missing OPA1 mutation: more insights from the first family diagnosed with autosomal dominant optic atrophy. Molecular Neurodegeneration, 2010, 5, 25.	10.8	15
110	The PD-associated alpha-synuclein promoter Rep1 allele 2 shows diminished frequency in restless legs syndrome. Neurogenetics, 2014, 15, 189-192.	1.4	15
111	Global Proteome of LonP1+/â^' Mouse Embryonal Fibroblasts Reveals Impact on Respiratory Chain, but No Interdependence between Eral1 and Mitoribosomes. International Journal of Molecular Sciences, 2019, 20, 4523.	4.1	15
112	Sleep spindles and K-complex activities are decreased in spinocerebellar ataxia type 2: relationship to memory and motor performances. Sleep Medicine, 2019, 60, 188-196.	1.6	15
113	Identification of the Physiological Promoter for Spinocerebellar Ataxia 2 Gene Reveals a CpG Island for Promoter Activity Situated into the Exon 1 of This Gene and Provides Data about the Origin of the Nonmethylated State of These Types of Islands. Biochemical and Biophysical Research Communications, 1999, 254, 315-318.	2.1	14
114	Loss of mitochondrial ClpP, Lonp1, and Tfam triggers transcriptional induction of Rnf213, a susceptibility factor for moyamoya disease. Neurogenetics, 2020, 21, 187-203.	1.4	14
115	New alternative splicing variants of the ATXN2 transcript. Neurological Research and Practice, 2019, 1, 22.	2.0	13
116	Mid-Gestation lethality of Atxn2l-Ablated Mice. International Journal of Molecular Sciences, 2020, 21, 5124.	4.1	13
117	Mouse Ataxin-2 Expansion Downregulates CamKII and Other Calcium Signaling Factors, Impairing Granule—Purkinje Neuron Synaptic Strength. International Journal of Molecular Sciences, 2020, 21, 6673.	4.1	13
118	Mutations in <i>ClZ1</i> are not a major cause for dystonia in Germany. Movement Disorders, 2015, 30, 740-743.	3.9	12
119	SerThr-PhosphoProteome of Brain from Aged PINK1-KO+A53T-SNCA Mice Reveals pT1928-MAP1B and pS3781-ANK2 Deficits, as Hub between Autophagy and Synapse Changes. International Journal of Molecular Sciences, 2019, 20, 3284.	4.1	12
120	Methyl-Arginine Profile of Brain from Aged PINK1-KO+A53T-SNCA Mice Suggests Altered Mitochondrial Biogenesis. Parkinson's Disease, 2016, 2016, 1-13.	1.1	9
121	Ataxia telangiectasia alters the ApoB and reelin pathway. Neurogenetics, 2018, 19, 237-255.	1.4	9
122	Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence. Cells, 2020, 9, 2229.	4.1	9
123	Increased presence of nuclear DNAJA3 and upregulation of cytosolic STAT1 and of nucleic acid sensors trigger innate immunity in the ClpP-null mouse. Neurogenetics, 2021, 22, 297-312.	1.4	9
124	Prodromal sensory neuropathy in <i>Pink1^{â~'/â~'}SNCA^{A53T}</i> double mutant Parkinson mice. Neuropathology and Applied Neurobiology, 2021, 47, 1060-1079.	3.2	8
125	PINK1 and Ataxin-2 as modifiers of growth. Oncotarget, 2017, 8, 32382-32383.	1.8	6
126	Saturating density of STSs (1/6 kb) in a 1.1 Mb region on 3q28-q29: a valuable resource for cloning of disease genes. European Journal of Human Genetics, 2001, 9, 307-310.	2.8	5

#	Article	IF	CITATIONS
127	Age-Related Changes of 14-3-3 IsoformsÂinÂMidbrain of A53T-SNCA Overexpressing Mice. Journal of Parkinson's Disease, 2015, 5, 595-604.	2.8	5
128	Body Mass Index Is Significantly Associated With Disease Severity in Spinocerebellar Ataxia Type 2 Patients. Movement Disorders, 2021, 36, 1372-1380.	3.9	5
129	Machado-Joseph Disease Is Genetically Different from Holguin Dominant Ataxia (SCA2). Genomics, 1993, 17, 556-559.	2.9	4
130	Inactivity of Peptidase ClpP Causes Primary Accumulation of Mitochondrial Disaggregase ClpX with Its Interacting Nucleoid Proteins, and of mtDNA. Cells, 2021, 10, 3354.	4.1	4
131	Search for the Chromosomal Location of Autosomal Dominant Cerebellar Ataxia from Holguin, Cuba: Exclusion from Candidate Regions on Chromosome 4 and 11q. Human Heredity, 1993, 43, 12-20.	0.8	3
132	Fine scale mapping places DLG1, the gene encoding hDlg, telomeric to the OPA1 candidate region. Mammalian Genome, 1997, 8, 795-796.	2.2	3
133	Spinocerebellar Ataxia Type 2. , 0, , .		3
134	Molecular heterogeneity of autosomal dominant cerebellar ataxia: analysis of flanking microsatellites of the spinocerebellar ataxia 1 locus in a northern European family unequivocally demonstrates non-linkage. Human Genetics, 1993, 91, 362-6.	3.8	2
135	Neurodegeneration in the polyglutamine diseases: Act 1, Scene 1. Nature Neuroscience, 2000, 3, 103-104.	14.8	1
136	Abnormal neuroendocrine response to clomipramine in hereditary affective psychosis. Depression and Anxiety, 2009, 26, E111-E119.	4.1	1
137	Rodent Models of Autosomal Recessive Parkinson Disease. , 2015, , 329-343.		1
138	One‑carbon metabolism factor MTHFR variant is associated with saccade latency in Spinocerebellar Ataxia type 2. Journal of the Neurological Sciences, 2020, 409, 116586.	0.6	1
139	Developing the field of neurogenetics. Neurogenetics, 2017, 18, 183-184.	1.4	0
140	The Andalusian Bipolar Family (ABiF) Study: Protocol and sample description. Revista De PsiquiatrÃa Y Salud Mental (English Edition), 2018, 11, 199-207.	0.3	0
141	Weight loss is correlated with disease severity in Spinocerebellar ataxia type 2: a cross-sectional cohort study. Nutritional Neuroscience, 2021, , 1-9.	3.1	0
142	Welcoming articles on genotype-dependent clinical features and diagnostics. Neurogenetics, 2021, 22, 103-104.	1.4	0