
Kinoshita Emiko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1127424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphate-binding Tag, a New Tool to Visualize Phosphorylated Proteins. Molecular and Cellular Proteomics, 2006, 5, 749-757.	2.5	997
2	Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nature Protocols, 2009, 4, 1513-1521.	5.5	347
3	FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nature Structural and Molecular Biology, 2008, 15, 1138-1146.	3.6	207
4	Improved Phosâ€ŧag SDSâ€PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics, 2011, 11, 319-323.	1.3	163
5	Label-free Kinase Profiling Using Phosphate Affinity Polyacrylamide Gel Electrophoresis. Molecular and Cellular Proteomics, 2007, 6, 356-366.	2.5	126
6	Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins. Journal of Separation Science, 2005, 28, 155-162.	1.3	93
7	Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphateâ€affinity SDSâ€PAGE. Proteomics, 2008, 8, 2994-3003.	1.3	81
8	Phosâ€ŧag SDSâ€₽AGE systems for phosphorylation profiling of proteins with a wide range of molecular masses under neutral pH conditions. Proteomics, 2012, 12, 192-202.	1.3	72
9	Enrichment of phosphorylated proteins from cell lysate using a novel phosphate-affinity chromatography at physiological pH. Proteomics, 2006, 6, 5088-5095.	1.3	65
10	The DNA-binding activity of mouse DNA methyltransferase 1 is regulated by phosphorylation with casein kinase 11/ε. Biochemical Journal, 2010, 427, 489-497.	1.7	56
11	Separation of a phosphorylated histidine protein using phosphate affinity polyacrylamide gel electrophoresis. Analytical Biochemistry, 2007, 360, 160-162.	1.1	50
12	Advances in Phos-tag-based methodologies for separation and detection of the phosphoproteome. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 601-608.	1.1	50
13	Two-dimensional phosphate-affinity gel electrophoresis for the analysis of phosphoprotein isotypes. Electrophoresis, 2009, 30, 550-559.	1.3	48
14	Mobility shift detection of phosphorylation on large proteins using a Phosâ€ŧag SDSâ€₽AGE gel strengthened with agarose. Proteomics, 2009, 9, 4098-4101.	1.3	46
15	Highly sensitive detection of protein phosphorylation by using improved Phos-tag Biotin. Proteomics, 2012, 12, 932-937.	1.3	41
16	Phos-tag beads as an immunoblotting enhancer for selective detection of phosphoproteins in cell lysates. Analytical Biochemistry, 2009, 389, 83-85.	1.1	35
17	Tips on improving the efficiency of electrotransfer of target proteins from Phos-tag SDS-PAGE gel. Proteomics, 2014, 14, 2437-2442.	1.3	32
18	Functional Characterization of the Receiver Domain for Phosphorelay Control in Hybrid Sensor Kinases. PLoS ONE, 2015, 10, e0132598.	1.1	32

Кілозніта Еміко

#	Article	IF	CITATIONS
19	Separation and identification of four distinct serineâ€phosphorylation states of ovalbumin by <scp>P</scp> hosâ€tag affinity electrophoresis. Electrophoresis, 2012, 33, 849-855.	1.3	30
20	A Phos-tag-based magnetic-bead method for rapid and selective separation of phosphorylated biomolecules. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 925, 86-94.	1.2	26
21	Profiling of protein thiophosphorylation by Phosâ€tag affinity electrophoresis: Evaluation of adenosine 5â€2â€ <i><scp>O</scp></i> â€(3â€thiotriphosphate) as a phosphoryl donor in protein kinase reaction Proteomics, 2014, 14, 668-679.	IS1.3	26
22	Validation of Cis and Trans Modes in Multistep Phosphotransfer Signaling of Bacterial Tripartite Sensor Kinases by Using Phos-Tag SDS-PAGE. PLoS ONE, 2016, 11, e0148294.	1.1	25
23	A Phosâ€ŧagâ€based micropipetteâ€ŧip method for rapid and selective enrichment of phosphopeptides. Electrophoresis, 2017, 38, 2447-2455.	1.3	22
24	Sandwich assay for phosphorylation of protein multiplexes by using antibodies and Phos-tag. Analytical Biochemistry, 2013, 438, 104-106.	1,1	21
25	A novel procedure for simple and efficient genotyping of single nucleotide polymorphisms by using the Zn2+-cyclen complex. Nucleic Acids Research, 2002, 30, 126e-126.	6.5	19
26	A Phosâ€ŧag SDSâ€₽AGE method that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1. Proteomics, 2016, 16, 1825-1836.	1.3	19
27	A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the dephosphorylation of phosphopeptides. Analytical Biochemistry, 2009, 388, 235-241.	1.1	18
28	Phosphate-Affinity Gel Electrophoresis Using a Phos-Tag Molecule for Phosphoproteome Study. Current Proteomics, 2009, 6, 104-121.	0.1	17
29	Expression and phosphorylation state analysis of intracellular protein kinases using Multi-PK antibody and Phos-tag SDS-PAGE. MethodsX, 2015, 2, 469-474.	0.7	17
30	TAMRA/TAMRA Fluorescence Quenching Systems for the Activity Assay of Alkaline Phosphatase. Sensors, 2017, 17, 1877.	2.1	17
31	A single nucleotide polymorphism genotyping method using phosphate-affinity polyacrylamide gel electrophoresis. Analytical Biochemistry, 2007, 361, 294-298.	1.1	15
32	A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the kinase reaction of a substrate peptide. Analytical Methods, 2011, 3, 1303.	1.3	15
33	Quantitative monitoring of His and Asp phosphorylation in a bacterial signaling system by using Phosâ€ŧag Magenta/Cyan fluorescent dyes. Electrophoresis, 2019, 40, 3005-3013.	1.3	15
34	A heteroduplex-preferential Tm depressor for the specificity-enhanced DNA polymerase chain reactions. Analytical Biochemistry, 2005, 337, 154-160.	1.1	14
35	The Cutting Edge of Affinity Electrophoresis Technology. Proteomes, 2015, 3, 42-55.	1.7	14
36	Evaluation of four phosphopeptide enrichment strategies for mass spectrometryâ€based proteomic analysis. Proteomics, 2022, 22, e2100216.	1.3	12

Κινοςμιτά Εμικό

#	Article	IF	CITATIONS
37	Reliable and Cost-Effective Screening of Inherited Heterozygosity by Zn2+–Cyclen Polyacrylamide Gel Electrophoresis. Clinical Chemistry, 2005, 51, 2195-2198.	1.5	11
38	Protein-N-myristoylation-dependent phosphorylation of serine 13 of tyrosine kinase Lyn by casein kinase 1Î ³ at the Golgi during intracellular protein traffic. Scientific Reports, 2020, 10, 16273.	1.6	11
39	Increase in constitutively active MEK1 species by introduction of MEK1 mutations identified in cancers. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 62-70.	1.1	10
40	Neutral Phosphate-Affinity SDS-PAGE System for Profiling of Protein Phosphorylation. Methods in Molecular Biology, 2015, 1295, 323-354.	0.4	10
41	History of Phos-tag technology for phosphoproteomics. Journal of Proteomics, 2022, 252, 104432.	1.2	10
42	An Alkoxide-Bridged Dinuclear Zinc(II) Hexaazacryptate: A Novel Phosphate Capture Molecule in Aqueous Solution. Bulletin of the Chemical Society of Japan, 2005, 78, 125-131.	2.0	9
43	Simple enrichment of thiolâ€containing biomolecules by using zinc(II)–cyclenâ€functionalized magnetic beads. Journal of Separation Science, 2014, 37, 1601-1609.	1.3	9
44	Non-SCN5A Related Brugada Syndromes: Verification of Normal Splicing and Trafficking of SCN5A Without Exonic Mutations. Annals of Human Genetics, 2007, 71, 8-17.	0.3	7
45	A mobility shift detection method for DNA methylation analysis using phosphate affinity polyacrylamide gel electrophoresis. Analytical Biochemistry, 2008, 378, 102-104.	1.1	7
46	Detection of the Gua/Cyt-to-Cyt/Gua mutation in a Gua/Cyt-lined sequence using Zn2+–cyclen polyacrylamide gel electrophoresis. Analytical Biochemistry, 2008, 380, 122-127.	1.1	7
47	Zn(II)–Phos-Tag SDS-PAGE for Separation and Detection of a DNA Damage-Related Signaling Large Phosphoprotein. Methods in Molecular Biology, 2017, 1599, 113-126.	0.4	6
48	Specific glutamic acid residues in targeted proteins induce exaggerated retardations in Phosâ€ŧag SDSâ€₽AGE migration. Electrophoresis, 2017, 38, 1139-1146.	1.3	6
49	Phosphopeptide Detection with Biotin-Labeled Phos-tag. Methods in Molecular Biology, 2016, 1355, 17-29.	0.4	6
50	Genotyping and mapping assay of single-nucleotide polymorphisms in CYP3A5 using DNA-binding zinc(II) complexes. Clinical Biochemistry, 2010, 43, 302-306.	0.8	5
51	Identification of two phosphorylated species of β-catenin involved in the ubiquitin-proteasome pathway by using two-dimensional Phos-tag affinity electrophoresis. Journal of Electrophoresis, 2014, 58, 1-4.	0.2	5
52	Gel-based analysis of protein phosphorylation status by rapid fluorometric staining using TAMRA-labeled Phos-tag. Journal of Electrophoresis, 2019, 63, 25-32.	0.2	5
53	A strategy to identify protein-N-myristoylation-dependent phosphorylation reactions of cellular proteins by using Phos-tag SDS-PAGE. PLoS ONE, 2019, 14, e0225510.	1.1	5
54	An immuno-dot blot assay for screening histidine kinase inhibitors. Analytical Biochemistry, 2020, 600, 113765.	1.1	5

Кілозніта Еміко

#	Article	IF	CITATIONS
55	Recent advances in the Phos-tag technique focused on the analysis of phosphoproteins in a bacterial two-component system. Journal of Proteomics, 2022, 252, 104429.	1.2	4
56	A novel thiol-affinity micropipette tip method using zinc(II)–cyclen-attached agarose beads for enrichment of cysteine-containing molecules. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1031, 195-201.	1.2	3
57	A simple method for determining the ligand affinity toward a zinc-enzyme model by using a TAMRA/TAMRA interaction. Dalton Transactions, 2018, 47, 1841-1848.	1.6	3
58	A method for profiling the phosphorylation state of tyrosine protein kinases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 71-75.	1.1	3
59	An assay of human tyrosine protein kinase ABL activity using an Escherichia coli protein expression system. BioTechniques, 2021, 70, 209-217.	0.8	3
60	Zn(II)–Cyclen Polyacrylamide Gel Electrophoresis for SNP Detection. Methods in Molecular Biology, 2009, 578, 169-182.	0.4	3
61	Phosphate-Affinity Polyacrylamide Gel Electrophoresis for SNP Genotyping. Methods in Molecular Biology, 2009, 578, 183-192.	0.4	3
62	Phos-tag Affinity Electrophoresis for Protein Kinase Profiling. Neuromethods, 2012, , 13-34.	0.2	3
63	Phos-tag Technology for Phosphoproteomics. Bunseki Kagaku, 2012, 61, 469-487.	0.1	2
64	Characterization of Phosphorylation Status and Kinase Activity of Src Family Kinases Expressed in Cell-Based and Cell-Free Protein Expression Systems. Biomolecules, 2021, 11, 1448.	1.8	2
65	Zinc(II)–cyclen polyacrylamide gel electrophoresis for detection of mutations in short Ade/Thy-rich DNA fragments. Analytical Biochemistry, 2011, 408, 348-350.	1.1	1
66	Improving the Electrotransfer Efficiency of Target Phosphoprotein from Phos-tag SDS-PAGE Gel. Bunseki Kagaku, 2015, 64, 501-509.	0.1	1
67	Phos-tag-based micropipette-tip method for analysis of phosphomonoester-type impurities in synthetic oligonucleotides. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1151, 122198.	1.2	1
68	Characterization of the Binding of Adenosine-5′-monophosphate to a µ-Type Alkoxide-Linked Dinuclear Zinc(II) Complex in Crystal and Solution State. Bulletin of the Chemical Society of Japan, 2021, 94, 2670-2677.	2.0	1
69	Phos-Tag Fluorescent Gel Staining for the Quantitative Detection of His- and Asp-Phosphorylated Proteins. Methods in Molecular Biology, 2021, 2261, 73-78.	0.4	1
70	A novel phosphate-affinity bead with immobilized Phos-tag for separation and enrichment of phosphopeptides and phosphoproteins. Journal of Integrated OMICS, 2011, 1, .	0.5	1
71	A dot-blot-staining method for detecting phosphoproteins with a Phos-tag Aqua fluorescent dye. Journal of Electrophoresis, 2020, 64, 7-11.	0.2	1
72	Determining Protein Phosphorylation Status Using Antibody Arrays and Phos-Tag Biotin. Methods in Molecular Biology, 2021, 2237, 217-224.	0.4	1

Κινος μιτα Εμικο

#	Article	IF	CITATIONS
73	Phos-tag-Based Affinity Chromatography Techniques for Enrichment of the Phosphoproteome. , 2015, , 17-30.		о
74	Phos-tag SDS-PAGE methodology that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1. Denki Eido, 2017, 61, 9-15.	0.0	0
75	Enrichment of Low-Molecular-Weight Phosphorylated Biomolecules Using Phos-Tag Tip. Neuromethods, 2019, , 75-84.	0.2	О
76	Quantitative analysis of phosphoproteins in a bacterial two-component system using Phos-tag techniques. Denki Eido, 2020, 64, 35-39.	0.0	0
77	Crystal Structure of Bis{1,3-bis[bis(pyridin-2-ylmethyl)amino]propan- 2-olato-dizinc(II)}orthophosphate Tris(perchlorate) Octahydrate, [(Phos-tag) ₂ -PO ₄ ^{3â^'}][ClO _{4& X-ray Structure Analysis Online. 2021. 37. 87-88.}	</ <mark>0.1</mark> <td>t;&l<mark>f;</mark>sup>â</td>	t;&l <mark>f;</mark> sup>â