F Javier Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11274039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and function of non-digestible carbohydrates in the gut microbiome. Beneficial Microbes, 2022, 13, 95-168.	1.0	26
2	Prebiotic potential of apple pomace and pectins from different apple varieties: Modulatory effects on key target commensal microbial populations. Food Hydrocolloids, 2022, 133, 107958.	5.6	18
3	Prebiotic Potential of a New Sweetener Based on Galactooligosaccharides and Modified Mogrosides. Journal of Agricultural and Food Chemistry, 2022, 70, 9048-9056.	2.4	10
4	Bringing the digestibility of prebiotics into focus: update of carbohydrate digestion models. Critical Reviews in Food Science and Nutrition, 2021, 61, 3267-3278.	5.4	17
5	Allergenicity Assessment of Novel Food Proteins: What Should Be Improved?. Trends in Biotechnology, 2021, 39, 4-8.	4.9	29
6	Behaviour of citrus pectin and modified citrus pectin in an azoxymethane/dextran sodium sulfate (AOM/DSS)-induced rat colorectal carcinogenesis model. International Journal of Biological Macromolecules, 2021, 167, 1349-1360.	3.6	12
7	Biosynthesis of Nondigestible Galactose-Containing Hetero-oligosaccharides by <i>Lactobacillus plantarum</i> WCFS1 MelA α-Galactosidase. Journal of Agricultural and Food Chemistry, 2021, 69, 955-965.	2.4	7
8	High-Yield Synthesis of Transglycosylated Mogrosides Improves the Flavor Profile of Monk Fruit Extract Sweeteners. Journal of Agricultural and Food Chemistry, 2021, 69, 1011-1019.	2.4	12
9	Hydrolysis and transglycosylation activities of glycosidases from small intestine brush-border membrane vesicles. Food Research International, 2021, 139, 109940.	2.9	3
10	Apple pomaces derived from mono-varietal Asturian ciders production are potential source of pectins with appealing functional properties. Carbohydrate Polymers, 2021, 264, 117980.	5.1	32
11	Ranking of immunodominant epitopes in celiac disease: Identification of reliable parameters for the safety assessment of innovative food proteins. Food and Chemical Toxicology, 2021, 157, 112584.	1.8	9
12	Vegetable waste and by-products to feed a healthy gut microbiota: Current evidence, machine learning and computational tools to design novel microbiome-targeted foods. Trends in Food Science and Technology, 2021, 118, 399-417.	7.8	21
13	Bifidobacterial β-Galactosidase-Mediated Production of Galacto-Oligosaccharides: Structural and Preliminary Functional Assessments. Frontiers in Microbiology, 2021, 12, 750635.	1.5	3
14	Production of α-rhamnosidases from Lactobacillus plantarum WCFS1 and their role in deglycosylation of dietary flavonoids naringin and rutin. International Journal of Biological Macromolecules, 2021, 193, 1093-1102.	3.6	15
15	Unravelling the carbohydrate specificity of MelA from Lactobacillus plantarum WCFS1: An α-galactosidase displaying regioselective transgalactosylation. International Journal of Biological Macromolecules, 2020, 153, 1070-1079.	3.6	9
16	Metabolism of biosynthetic oligosaccharides by human-derived Bifidobacterium breve UCC2003 and Bifidobacterium longum NCIMB 8809. International Journal of Food Microbiology, 2020, 316, 108476.	2.1	16
17	Probiotic viability in yoghurts containing oligosaccharides derived from lactulose (OsLu) during fermentation and cold storage. International Dairy Journal, 2020, 102, 104621.	1.5	18
18	Hydrolysis and transgalactosylation catalysed by Î ² -galactosidase from brush border membrane vesicles isolated from pig small intestine: A study using lactulose and its mixtures with lactose or galactose as substrates. Food Research International, 2020, 129, 108811.	2.9	8

#	Article	IF	CITATIONS
19	Transglycosylation of Steviol Glycosides and Rebaudioside A: Synthesis Optimization, Structural Analysis and Sensory Profiles. Foods, 2020, 9, 1753.	1.9	16
20	Hydrolysis of Lactose and Transglycosylation of Selected Sugar Alcohols by LacA β-Galactosidase from <i>Lactobacillus plantarum</i> WCFS1. Journal of Agricultural and Food Chemistry, 2020, 68, 7040-7050.	2.4	14
21	Physical properties of synbiotic yogurts as affected by the acidification rate. International Dairy Journal, 2020, 105, 104665.	1.5	7
22	Andean tubers grown in Ecuador: New sources of functional ingredients. Food Bioscience, 2020, 35, 100601.	2.0	13
23	Chemical and physicochemical characterization of orange byâ€products derived from industry. Journal of the Science of Food and Agriculture, 2019, 99, 868-876.	1.7	18
24	Morphological, technological and nutritional properties of flours and starches from mashua (Tropaeolum tuberosum) and melloco (Ullucus tuberosus) cultivated in Ecuador. Food Chemistry, 2019, 301, 125268.	4.2	17
25	Unravelling the diversity of glycoside hydrolase family 13 α-amylases from Lactobacillus plantarum WCFS1. Microbial Cell Factories, 2019, 18, 183.	1.9	24
26	Glycation affects differently the main soybean Bowman–Birk isoinhibitors, IBB1 and IBBD2, altering their antiproliferative properties against HT29 colon cancer cells. Food and Function, 2019, 10, 6193-6202.	2.1	8
27	In vitro Digestibility of Dietary Carbohydrates: Toward a Standardized Methodology Beyond Amylolytic and Microbial Enzymes. Frontiers in Nutrition, 2019, 6, 61.	1.6	21
28	Safety Assessment of Immune-Mediated Adverse Reactions to Novel Food Proteins. Trends in Biotechnology, 2019, 37, 796-800.	4.9	20
29	<i>In Vitro</i> Digestibility of Galactooligosaccharides: Effect of the Structural Features on Their Intestinal Degradation. Journal of Agricultural and Food Chemistry, 2019, 67, 4662-4670.	2.4	39
30	Fermentative properties of starter culture during manufacture of kefir with new prebiotics derived from lactulose. International Dairy Journal, 2019, 93, 22-29.	1.5	21
31	Structural and Rheological Properties of Pectins Extracted from Industrial Sugar Beet By-Products. Molecules, 2019, 24, 392.	1.7	57
32	Effect of selected prebiotics on the growth of lactic acid bacteria and physicochemical properties of yoghurts. International Dairy Journal, 2019, 89, 77-85.	1.5	47
33	Behaviour of citrus pectin during its gastrointestinal digestion and fermentation in a dynamic simulator (simgi®). Carbohydrate Polymers, 2019, 207, 382-390.	5.1	79
34	Trans-β-galactosidase activity of pig enzymes embedded in the small intestinal brush border membrane vesicles. Scientific Reports, 2019, 9, 960.	1.6	17
35	Anti-inflammatory bowel effect of industrial orange by-products in DSS-treated mice. Food and Function, 2018, 9, 4888-4896.	2.1	34
36	Application of a commercial digestive supplement formulated with enzymes and probiotics in lactase non-persistence management. Food and Function, 2018, 9, 4642-4650.	2.1	7

#	Article	IF	CITATIONS
37	Stability of Oligosaccharides Derived from Lactose and Lactulose regarding Rheological and Thermal Properties. Journal of Food Quality, 2018, 2018, 1-9.	1.4	4
38	Sweetness and sensory properties of commercial and novel oligosaccharides of prebiotic potential. LWT - Food Science and Technology, 2018, 97, 476-482.	2.5	27
39	In vitro fermentation properties of pectins and enzymatic-modified pectins obtained from different renewable bioresources. Carbohydrate Polymers, 2018, 199, 482-491.	5.1	92
40	Changes in Caprine Milk Oligosaccharides at Different Lactation Stages Analyzed by High Performance Liquid Chromatography Coupled to Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2017, 65, 3523-3531.	2.4	32
41	Modification of citrus and apple pectin by power ultrasound: Effects of acid and enzymatic treatment. Ultrasonics Sonochemistry, 2017, 38, 807-819.	3.8	77
42	Effect of glycation and limited hydrolysis on interfacial and foaming properties of bovine β-lactoglobulin. Food Hydrocolloids, 2017, 66, 16-26.	5.6	20
43	Assessment of <i>in Vitro</i> Digestibility of Dietary Carbohydrates Using Rat Small Intestinal Extract. Journal of Agricultural and Food Chemistry, 2017, 65, 8046-8053.	2.4	44
44	Enzymatic Synthesis and Structural Characterization of Theanderose through Transfructosylation Reaction Catalyzed by Levansucrase from <i>Bacillus subtilis</i> CECT 39. Journal of Agricultural and Food Chemistry, 2017, 65, 10505-10513.	2.4	10
45	Genome Structure of the Symbiont Bifidobacterium pseudocatenulatum CECT 7765 and Gene Expression Profiling in Response to Lactulose-Derived Oligosaccharides. Frontiers in Microbiology, 2016, 7, 624.	1.5	12
46	Tofu Whey Permeate Is an Efficient Source To Enzymatically Produce Prebiotic Fructooligosaccharides and Novel Fructosylated α-Galactosides. Journal of Agricultural and Food Chemistry, 2016, 64, 4346-4352.	2.4	40
47	In vitro faecal fermentation of novel oligosaccharides enzymatically synthesized using microbial transglycosidases acting on sucrose. Journal of Functional Foods, 2016, 20, 532-544.	1.6	24
48	Synthesis and structural characterization of raffinosyl-oligofructosides upon transfructosylation by Lactobacillus gasseri DSM 20604 inulosucrase. Applied Microbiology and Biotechnology, 2016, 100, 6251-6263.	1.7	17
49	Characterization of post-translationally modified peptides by hydrophilic interaction and reverse phase liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. Journal of Chromatography A, 2016, 1428, 202-211.	1.8	15
50	Kojibiose ameliorates arachidic acid-induced metabolic alterations in hyperglycaemic rats. British Journal of Nutrition, 2015, 114, 1395-1402.	1.2	15
51	Valorization of Cheese and Tofu Whey through Enzymatic Synthesis of Lactosucrose. PLoS ONE, 2015, 10, e0139035.	1.1	17
52	Use of room temperature ionic liquids for the selective fractionation of bioactive ketoses from aldoses. Separation and Purification Technology, 2015, 149, 140-145.	3.9	16
53	Stability of oligosaccharides derived from lactulose during the processing of milk and apple juice. Food Chemistry, 2015, 183, 64-71.	4.2	28
54	Synthesis of potentially-bioactive lactosyl-oligofructosides by a novel bi-enzymatic system using bacterial fructansucrases. Food Research International, 2015, 78, 258-265.	2.9	9

#	Article	IF	CITATIONS
55	Acute Oral Safety Study of Sodium Caseinate Glycosylated via Maillard Reaction with Galactose in Rats. Journal of Food Protection, 2014, 77, 472-479.	0.8	2
56	Synthesis of novel bioactive lactoseâ€derived oligosaccharides by microbial glycoside hydrolases. Microbial Biotechnology, 2014, 7, 315-331.	2.0	51
57	Selective fermentation of potential prebiotic lactose-derived oligosaccharides by probiotic bacteria. International Dairy Journal, 2014, 38, 11-15.	1.5	44
58	Impact of high-intensity ultrasound on the formation of lactulose and Maillard reaction glycoconjugates. Food Chemistry, 2014, 157, 186-192.	4.2	56
59	A sustainable biotechnological process for the efficient synthesis of kojibiose. Green Chemistry, 2014, 16, 2219-2226.	4.6	26
60	Structural differences of prebiotic oligosaccharides influence their capability to enhance iron absorption in deficient rats. Food and Function, 2014, 5, 2430-2437.	2.1	47
61	Influence of Chemical Structure on the Solubility of Low Molecular Weight Carbohydrates in Room Temperature Ionic Liquids. Industrial & Engineering Chemistry Research, 2014, 53, 13843-13850.	1.8	24
62	Synthesis and Characterization of Isomaltulose-Derived Oligosaccharides Produced by Transglucosylation Reaction of <i>Leuconostoc mesenteroides</i> Dextransucrase. Journal of Agricultural and Food Chemistry, 2014, 62, 9137-9144.	2.4	16
63	Analysis, structural characterization, and bioactivity of oligosaccharides derived from lactose. Electrophoresis, 2014, 35, 1519-1534.	1.3	54
64	Synthesis of prebiotic carbohydrates derived from cheese whey permeate by a combined process of isomerisation and transgalactosylation. Journal of the Science of Food and Agriculture, 2013, 93, 1591-1597.	1.7	41
65	Galacto-oligosaccharides Derived from Lactulose Exert a Selective Stimulation on the Growth of Bifidobacterium animalis in the Large Intestine of Growing Rats. Journal of Agricultural and Food Chemistry, 2013, 61, 7560-7567.	2.4	61
66	InÂvitro bifidogenic effect of Maillard-type milk protein–galactose conjugates on the human intestinal microbiota. International Dairy Journal, 2013, 31, 127-131.	1.5	34
67	Enzymatic Synthesis and Characterization of Fructooligosaccharides and Novel Maltosylfructosides by Inulosucrase from Lactobacillus gasseri DSM 20604. Applied and Environmental Microbiology, 2013, 79, 4129-4140.	1.4	42
68	Monomer and Linkage Type of Galacto-Oligosaccharides Affect Their Resistance to Ileal Digestion and Prebiotic Properties in Rats. Journal of Nutrition, 2012, 142, 1232-1239.	1.3	87
69	Efficient Synthesis and Characterization of Lactulosucrose by Leuconostoc mesenteroides B-512F Dextransucrase. Journal of Agricultural and Food Chemistry, 2012, 60, 10564-10571.	2.4	21
70	Hydrolyzed Caseinomacropeptide Conjugated Galactooligosaccharides Support the Growth and Enhance the Bile Tolerance in <i>Lactobacillus</i> Strains. Journal of Agricultural and Food Chemistry, 2012, 60, 6839-6845.	2.4	12
71	Growth and transcriptional response of Salmonella Typhimurium LT2 to glucose–lysine-based Maillard reaction products generated under low water activity conditions. Food Research International, 2012, 45, 1044-1053.	2.9	12
72	Assessment of interfacial and foaming properties of bovine sodium caseinate glycated with galactose. Journal of Food Engineering, 2012, 113, 461-470.	2.7	22

#	Article	IF	CITATIONS
73	Synthesis and Characterization of a Potential Prebiotic Trisaccharide from Cheese Whey Permeate and Sucrose by <i>Leuconostoc mesenteroides</i> Dextransucrase. Journal of Agricultural and Food Chemistry, 2012, 60, 1945-1953.	2.4	34
74	Proteomic analysis of processing by-products from canned and fresh tuna: Identification of potentially functional food proteins. Food Chemistry, 2012, 134, 1211-1219.	4.2	19
75	Interfacial and foaming properties of bovine β-lactoglobulin: Galactose Maillard conjugates. Food Hydrocolloids, 2012, 27, 438-447.	5.6	54
76	Effect of milk protein glycation and gastrointestinal digestion on the growth of bifidobacteria and lactic acid bacteria. International Journal of Food Microbiology, 2012, 153, 420-427.	2.1	54
77	In Vitro Fermentation by Human Gut Bacteria of Proteolytically Digested Caseinomacropeptide Nonenzymatically Glycosylated with Prebiotic Carbohydrates. Journal of Agricultural and Food Chemistry, 2011, 59, 11949-11955.	2.4	38
78	Detection of Two Minor Phosphorylation Sites for Bovine κ-Casein Macropeptide by Reversed-Phase Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2011, 59, 10848-10853.	2.4	15
79	Effect of glycation of bovine \hat{l}^2 -lactoglobulin with galactooligosaccharides on the growth of human faecal bacteria. International Dairy Journal, 2011, 21, 949-952.	1.5	13
80	Characterization of galactooligosaccharides derived from lactulose. Journal of Chromatography A, 2011, 1218, 7691-7696.	1.8	47
81	Maillard-type glycoconjugates from dairy proteins inhibit adhesion of Escherichia coli to mucin. Food Chemistry, 2011, 129, 1435-1443.	4.2	17
82	Characterization and improvement of rheological properties of sodium caseinate glycated with galactose, lactose and dextran. Food Hydrocolloids, 2010, 24, 88-97.	5.6	72
83	Role of Pyridoxamine in the Formation of the Amadori/Heyns Compounds and Aggregates during the Glycation of Î2-Lactoglobulin with Galactose and Tagatose. Journal of Agricultural and Food Chemistry, 2010, 58, 500-506.	2.4	15
84	Effect of glycation on the gastrointestinal digestibility and immunoreactivity of bovine β-lactoglobulin. International Dairy Journal, 2010, 20, 742-752.	1.5	105
85	Recent Advances in the Recovery and Improvement of Functional Proteins from Fish Processing Byâ€Products: Use of Protein Glycation as an Alternative Method. Comprehensive Reviews in Food Science and Food Safety, 2009, 8, 332-344.	5.9	40
86	Application of liquid chromatography–tandem mass spectrometry for the characterization of galactosylated and tagatosylated I²-lactoglobulin peptides derived from in vitro gastrointestinal digestion. Journal of Chromatography A, 2009, 1216, 7205-7212.	1.8	20
87	Comparison of fractionation techniques to obtain prebiotic galactooligosaccharides. International Dairy Journal, 2009, 19, 531-536.	1.5	115
88	Mass spectrometric characterization of glycated <i>β</i> -lactoglobulin peptides derived from galacto-oligosaccharides surviving the <i>in vitro</i> gastrointestinal digestion. Journal of the American Society for Mass Spectrometry, 2008, 19, 927-937.	1.2	47
89	Structural Characterization of Bovine β-Lactoglobulinâ~'Galactose/Tagatose Maillard Complexes by Electrophoretic, Chromatographic, and Spectroscopic Methods. Journal of Agricultural and Food Chemistry, 2008, 56, 4244-4252.	2.4	73
90	2S Albumin Storage Proteins: What Makes them Food Allergens?. The Open Biochemistry Journal, 2008, 2, 16-28.	0.3	180

#	Article	IF	CITATIONS
91	In vitro glycation and antigenicity of soy proteins. Food Research International, 2007, 40, 153-160.	2.9	81
92	Gastrointestinal digestion of food allergens: Effect on their allergenicity. Biomedicine and Pharmacotherapy, 2007, 61, 50-60.	2.5	191
93	Characterization and in Vitro Digestibility of Bovine β-Lactoglobulin Glycated with Galactooligosaccharides. Journal of Agricultural and Food Chemistry, 2007, 55, 7916-7925.	2.4	69
94	Optimized techniques for the extraction of grape allergens appropriate for in vivo and in vitro testing and diagnosis. Molecular Nutrition and Food Research, 2007, 51, 360-366.	1.5	6
95	Effect of in vitro gastric and duodenal digestion on the allergenicity of grape lipid transfer protein. Journal of Allergy and Clinical Immunology, 2006, 118, 473-480.	1.5	83
96	Uptake of 2S Albumin Allergens, Ber e 1 and Ses i 1, across Human Intestinal Epithelial Caco-2 Cell Monolayers. Journal of Agricultural and Food Chemistry, 2006, 54, 8631-8639.	2.4	53
97	Changes in antioxidant activity of dehydrated onion and garlic during storage. Food Research International, 2006, 39, 891-897.	2.9	68
98	Thermostability and in vitro digestibility of a purified major allergen 2S albumin (Ses i 1) from white sesame seeds (Sesamum indicum L.). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1752, 142-153.	1.1	68
99	Stability of the major allergen Brazil nut 2S albumin (Ber e 1) to physiologically relevant in vitro gastrointestinal digestion. FEBS Journal, 2005, 272, 341-352.	2.2	152
100	Assessment of Initial Stages of Maillard Reaction in Dehydrated Onion and Garlic Samples. Journal of Agricultural and Food Chemistry, 2005, 53, 9078-9082.	2.4	45
101	Phospholipid Interactions Protect the Milk Allergen α-Lactalbumin from Proteolysis during in Vitro Digestion. Journal of Agricultural and Food Chemistry, 2005, 53, 9810-9816.	2.4	112
102	Mass spectrometry and structural characterization of 2S albumin isoforms from Brazil nuts (Bertholletia excelsa). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1698, 175-186.	1.1	62
103	High-Pressure Effects on Maillard Reaction between Glucose and Lysine. Journal of Agricultural and Food Chemistry, 2003, 51, 394-400.	2.4	92
104	Effect of High Pressure on Isomerization and Degradation of Lactose in Alkaline Media. Journal of Agricultural and Food Chemistry, 2003, 51, 1894-1896.	2.4	37
105	Characterization and Functional Properties of Lactosyl Caseinomacropeptide Conjugates. Journal of Agricultural and Food Chemistry, 2002, 50, 5179-5184.	2.4	61
106	Heterogeneity of caprine l̂º-casein macropeptide. Journal of Dairy Research, 2001, 68, 197-208.	0.7	24
107	Chromatographic characterization of ovine κ-casein macropeptide. Journal of Dairy Research, 2000, 67, 349-359.	0.7	32