Peter Nadazdy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1127314/publications.pdf Version: 2024-02-01

Ρετέρ Νληλσην

#	Article	IF	CITATIONS
1	Simultaneous measurement of X-ray scattering and photoluminescence during molecular deposition. Journal of Luminescence, 2022, 248, 118950.	3.1	1
2	Crystallization of 2D Hybrid Organic–Inorganic Perovskites Templated by Conductive Substrates. Advanced Functional Materials, 2021, 31, 2009007.	14.9	14
3	Orientation of Few-Layer MoS ₂ Films: In-Situ X-ray Scattering Study During Sulfurization. Journal of Physical Chemistry C, 2021, 125, 9461-9468.	3.1	7
4	A high-throughput assembly of beam-shaping channel-cut monochromators for laboratory high-resolution X-ray diffraction and small-angle X-ray scattering experiments. Journal of Applied Crystallography, 2021, 54, 730-738.	4.5	0
5	Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenes. Physical Review Materials, 2021, 5, .	2.4	5
6	Multipurpose diffractometer for <i>in situ</i> X-ray crystallography of functional materials. Journal of Applied Crystallography, 2021, 54, 914-923.	4.5	2
7	Structural and Trap tate Density Enhancement in Flash Infrared Annealed Perovskite Layers. Advanced Materials Interfaces, 2021, 8, 2100355.	3.7	8
8	Directional Crystallization from the Melt of an Organic p-Type and n-Type Semiconductor Blend. Crystal Growth and Design, 2021, 21, 5231-5239.	3.0	8
9	3D networks of nanopores in alumina: Structural and optical properties. Microporous and Mesoporous Materials, 2021, 325, 111306.	4.4	2
10	Combined <i>in Situ</i> Photoluminescence and X-ray Scattering Reveals Defect Formation in Lead-Halide Perovskite Films. Journal of Physical Chemistry Letters, 2021, 12, 10156-10162.	4.6	15
11	Novel highly substituted thiophene-based n-type organic semiconductor: structural study, optical anisotropy and molecular control. CrystEngComm, 2020, 22, 7095-7103.	2.6	2
12	3D Networks of Ge Quantum Wires in Amorphous Alumina Matrix. Nanomaterials, 2020, 10, 1363.	4.1	8
13	Correlation Between the Crystalline Phase of Molybdenum Oxide and Horizontal Alignment in Thin MoS ₂ Films. Journal of Physical Chemistry C, 2020, 124, 19362-19367.	3.1	2
14	Simultaneous Monitoring of Molecular Thin Film Morphology and Crystal Structure by X-ray Scattering. Crystal Growth and Design, 2020, 20, 5269-5276.	3.0	5
15	Reorientation of π-conjugated molecules on few-layer MoS ₂ films. Physical Chemistry Chemical Physics, 2020, 22, 3097-3104.	2.8	11
16	Controlled crystallinity and morphologies of 2D Ruddlesden-Popper perovskite films grown without anti-solvent for solar cells. Chemical Engineering Journal, 2020, 394, 124959.	12.7	33
17	Langmuir–Scheaffer Technique as a Method for Controlled Alignment of 1D Materials. Langmuir, 2020, 36, 4540-4547	3.5	15
18	Effect of the doping of PC61BM electron transport layer with carbon nanodots on the performance of inverted planar MAPbI3 perovskite solar cells. Solar Energy, 2019, 189, 426-434.	6.1	15

Peter Nadazdy

#	Article	IF	CITATIONS
19	Diindenoperylene thin-film structure on MoS2 monolayer. Applied Physics Letters, 2019, 114, .	3.3	14
20	Exploiting the potential of beam-compressing channel-cut monochromators for laboratory high-resolution small-angle X-ray scattering experiments. Journal of Applied Crystallography, 2019, 52, 498-506.	4.5	4
21	Tailoring the interparticle distance in Langmuir nanoparticle films. Physical Chemistry Chemical Physics, 2019, 21, 9553-9563.	2.8	9
22	An experimental and theoretical study of the structural ordering of the PTB7 polymer at a mesoscopic scale. Polymer, 2019, 169, 243-254.	3.8	11
23	Finishing of Ge nanomachined surfaces for X-ray crystal optics. International Journal of Advanced Manufacturing Technology, 2018, 96, 3603-3617.	3.0	5
24	Thickness Effect on Structural Defect-Related Density of States and Crystallinity in P3HT Thin Films on ITO Substrates. Journal of Physical Chemistry C, 2018, 122, 5881-5887.	3.1	22
25	On the formation of hydrophobic carbon quantum dots Langmuir films and their transfer onto solid substrates. Diamond and Related Materials, 2018, 83, 170-176.	3.9	10
26	Real-Time Monitoring of Growth and Orientational Alignment of Pentacene on Epitaxial Graphene for Organic Electronics. ACS Applied Nano Materials, 2018, 1, 2819-2826.	5.0	21
27	Kinetics of Polymer–Fullerene Phase Separation during Solvent Annealing Studied by Table-Top X-ray Scattering. ACS Applied Materials & Interfaces, 2017, 9, 8241-8247.	8.0	11
28	Effect of alkyl side chains on properties and organic transistor performance of 2,6-bis(2,2′-bithiophen-5-yl)naphthalene. Synthetic Metals, 2017, 233, 1-14.	3.9	12
29	Defect Formation During the Halide Perovskite Growth: Timing is the Way to Effective Passivation. , 0, ,		0