
Scott Roy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1127173/publications.pdf Version: 2024-02-01

SCOTT POV

#	Article	IF	CITATIONS
1	Haldane's duel: intragenomic conflict, selfish Y chromosomes and speciation. Trends in Genetics, 2022, 38, 8-11.	2.9	3
2	How did a novel X-linked gene become essential for male determination?. Cell Research, 2022, 32, 7-8.	5.7	1
3	How illuminates why in plant germline methylation. Trends in Plant Science, 2022, , .	4.3	0
4	Distinct Minor Splicing Patterns across Cancers. Genes, 2022, 13, 387.	1.0	3
5	Digest: Study associates squamate rates, traits, and climates. Evolution; International Journal of Organic Evolution, 2022, , .	1.1	0
6	Optimality Versus Opportunity: The Recurrent Evolution of Similar Sex Determination Mechanisms. Journal of Heredity, 2022, 113, 235-237.	1.0	0
7	Gene-rich X chromosomes implicate intragenomic conflict in the evolution of bizarre genetic systems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
8	Noncoding RNA, Intragenomic Conflict, and Rodent SRY Evolution. Trends in Genetics, 2021, 37, 102-104.	2.9	2
9	Analysis of Fungal Genomes Reveals Commonalities of Intron Gain or Loss and Functions in Intron-Poor Species. Molecular Biology and Evolution, 2021, 38, 4166-4186.	3.5	19
10	On the Form and Origins of the Bizarre Sex Chromosomal System of the Mandarin Vole. Journal of Heredity, 2021, 112, 328-334.	1.0	7
11	Mammals with Small Populations Do Not Exhibit Larger Genomes. Molecular Biology and Evolution, 2021, 38, 3737-3741.	3.5	6
12	Inbreeding, male viability, and the remarkable evolutionary stability of the aphid X chromosome. Heredity, 2021, 127, 135-140.	1.2	3
13	Sex chromosome transformation and the origin of a male-specific X chromosome in the creeping vole. Science, 2021, 372, 592-600.	6.0	20
14	CXCR3 Expression and Genome-Wide $3\hat{a} \in 2$ Splice Site Selection in the TCGA Breast Cancer Cohort. Life, 2021, 11, 746.	1.1	3
15	Expansion and transformation of the minor spliceosomal system in the slime mold Physarum polycephalum. Current Biology, 2021, 31, 3125-3131.e4.	1.8	13
16	ExOrthist: a tool to infer exon orthologies at any evolutionary distance. Genome Biology, 2021, 22, 239.	3.8	11
17	On the utility of oddities: exceptional bee reproduction illuminates fundamental questions of recombination. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211478.	1.2	0
18	Dual Fertilization, Intragenomic Conflict, Genome Downsizing, and Angiosperm Dominance. Trends in Plant Science, 2021, 26, 767-769.	4.3	1

#	Article	IF	CITATIONS
19	Digest: Three sexes from two loci in one genome: A haploid alga expands the diversity of trioecious species*. Evolution; International Journal of Organic Evolution, 2021, 75, 3002-3003.	1.1	1
20	Coupling of spliceosome complexity to intron diversity. Current Biology, 2021, 31, 4898-4910.e4.	1.8	22
21	CRISPR-Cas Toxin–Antitoxin Systems: Selfishness as a Constructive Evolutionary Force. Trends in Microbiology, 2021, 29, 869-870.	3.5	2
22	Costly circRNAs, Effective Population Size, and the Origins of Molecular Complexity. Journal of Molecular Evolution, 2021, 89, 598-600.	0.8	0
23	Sex determination: Ant supergenes link sex ratio toÂsocial structure. Current Biology, 2021, 31, R1573-R1575.	1.8	0
24	Comprehensive database and evolutionary dynamics of U12-type introns. Nucleic Acids Research, 2020, 48, 7066-7078.	6.5	35
25	CpG-creating mutations are costly in many human viruses. Evolutionary Ecology, 2020, 34, 339-359.	0.5	14
26	Patterns of conservation of spliceosomal intron structures and spliceosome divergence in representatives of the diplomonad and parabasalid lineages. BMC Evolutionary Biology, 2019, 19, 162.	3.2	17
27	Molecular Evolution: RNA Splicing Machinery Moonlights in Junk Removal. Current Biology, 2019, 29, R920-R922.	1.8	0
28	On the Function of Trans-Splicing: No Evidence for Widespread Proteome Diversification in Trypanosomes. Genome Biology and Evolution, 2019, 11, 3014-3021.	1.1	1
29	Investigating Instructor Talk in Novel Contexts: Widespread Use, Unexpected Categories, and an Emergent Sampling Strategy. CBE Life Sciences Education, 2019, 18, ar47.	1.1	31
30	Collectively Improving Our Teaching: Attempting Biology Department–wide Professional Development in Scientific Teaching. CBE Life Sciences Education, 2018, 17, ar2.	1.1	39
31	Intragenomic Conflict and Immune Tolerance: Do Selfish X-Linked Alleles Drive Skewed X Chromosome Inactivation?. Genome Biology and Evolution, 2018, 10, 857-862.	1.1	3
32	Classroom sound can be used to classify teaching practices in college science courses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3085-3090.	3.3	60
33	The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell. Current Biology, 2017, 27, 569-575.	1.8	105
34	Genomic and Transcriptomic Analysis Reveals Spliced Leader Trans-Splicing in Cryptomonads. Genome Biology and Evolution, 2017, 9, 468-473.	1.1	7
35	Transcriptomic analysis of diplomonad parasites reveals a trans-spliced intron in a helicase gene in <i>Giardia</i> . PeerJ, 2017, 5, e2861.	0.9	7
36	How Common Is Parallel Intron Gain? Rapid Evolution Versus Independent Creation in Recently Created Introns in <i>Daphnia</i> . Molecular Biology and Evolution, 2016, 33, 1902-1906.	3.5	13

#	Article	IF	CITATIONS
37	ls Mutation Random or Targeted?: No Evidence for Hypermutability in Snail Toxin Genes. Molecular Biology and Evolution, 2016, 33, 2642-2647.	3.5	6
38	ls Genome Complexity a Consequence of Inefficient Selection? Evidence from Intron Creation in Nonrecombining Regions. Molecular Biology and Evolution, 2016, 33, 3088-3094.	3.5	9
39	Mechanism for DNA transposons to generate introns on genomic scales. Nature, 2016, 538, 533-536.	13.7	83
40	HAPCAD: An open-source tool to detect PCR crossovers in next-generation sequencing generated HLA data. Human Immunology, 2016, 77, 257-263.	1.2	4
41	A new model for the origins of allelic dimorphism in Plasmodium falciparum. Parasitology International, 2015, 64, 229-237.	0.6	4
42	Analyses of Alternatively Processed Genes in Ciliates Provide Insights into the Origins of Scrambled Genomes and May Provide a Mechanism for Speciation. MBio, 2015, 6, .	1.8	22
43	The Plasmodium gaboni genome illuminates allelic dimorphism of immunologically important surface antigens in P. falciparum. Infection, Genetics and Evolution, 2015, 36, 441-449.	1.0	7
44	Transcriptome sequencing and analysis of Plasmodium gallinaceum reveals polymorphisms and selection on the apical membrane antigen-1. Malaria Journal, 2014, 13, 382.	0.8	25
45	Elephant shark genome provides unique insights into gnathostome evolution. Nature, 2014, 505, 174-179.	13.7	689
46	Origin of Spliceosomal Introns and Alternative Splicing. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016071-a016071.	2.3	112
47	Diversity and Evolution of Spliceosomal Systems. Methods in Molecular Biology, 2014, 1126, 13-33.	0.4	11
48	Ancient cis-regulatory constraints and the evolution of genome architecture. Trends in Genetics, 2013, 29, 521-528.	2.9	30
49	Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biology, 2013, 14, R11.	13.9	296
50	Evolutionarily conserved A-to-I editing increases protein stability of the alternative splicing factor <i>Nova1</i> . RNA Biology, 2012, 9, 12-21.	1.5	40
51	Widespread Recurrent Evolution of Genomic Features. Genome Biology and Evolution, 2012, 4, 486-500.	1.1	34
52	Numerous Fragmented Spliceosomal Introns, AT-AC Splicing, and an Unusual Dynein Gene Expression Pathway in Giardia lamblia. Molecular Biology and Evolution, 2012, 29, 43-49.	3.5	31
53	Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 2012, 492, 59-65.	13.7	377
54	Genome Evolution: Where Do New Introns Come From?. Current Biology, 2012, 22, R529-R531.	1.8	13

#	Article	IF	CITATIONS
55	Extensive conservation of ancient microsynteny across metazoans due to <i>cis</i> -regulatory constraints. Genome Research, 2012, 22, 2356-2367.	2.4	126
56	Contrasting 5' and 3' Evolutionary Histories and Frequent Evolutionary Convergence in Meis/hth Gene Structures. Genome Biology and Evolution, 2011, 3, 551-564.	1.1	16
57	Stepwise assembly of the <i>Nova</i> -regulated alternative splicing network in the vertebrate brain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5319-5324.	3.3	38
58	Molecular Characterization of Myostatin Gene from Zhikong scallop Chlamys farreri (Jones et) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 622

59	Compensatory Mutations Restore Fitness during the Evolution of Dihydrofolate Reductase. Molecular Biology and Evolution, 2010, 27, 2682-2690.	3.5	93
60	Internal and External Paralogy in the Evolution of Tropomyosin Genes in Metazoans. Molecular Biology and Evolution, 2010, 27, 1504-1517.	3.5	23
61	Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate. Science, 2010, 330, 1381-1385.	6.0	251
62	Constrained Intron Structures in a Microsporidian. Molecular Biology and Evolution, 2010, 27, 1979-1982.	3.5	30
63	Phylogenomics: Gene Duplication, Unrecognized Paralogy and Outgroup Choice. PLoS ONE, 2009, 4, e4568.	1.1	12
64	Evolution of Alternative Splicing Regulation: Changes in Predicted Exonic Splicing Regulators Are Not Associated with Changes in Alternative Splicing Levels in Primates. PLoS ONE, 2009, 4, e5800.	1.1	16
65	Complex selection on 5â \in ² splice sites in intron-rich organisms. Genome Research, 2009, 19, 2021-2027.	2.4	25
66	Mystery of intron gain: new data and new models. Trends in Genetics, 2009, 25, 67-73.	2.9	64
67	Intronization, de-intronization and intron sliding are rare in Cryptococcus. BMC Evolutionary Biology, 2009, 9, 192.	3.2	22
68	Quantitative regulation of alternative splicing in evolution and development. BioEssays, 2009, 31, 40-50.	1.2	49
69	Sequence diversity and evolutionary dynamics of the dimorphic antigen merozoite surface protein-6 and other Msp genes of Plasmodium falciparum. Gene, 2009, 443, 12-21.	1.0	9
70	Splicing in the eukaryotic ancestor: form, function and dysfunction. Trends in Ecology and Evolution, 2009, 24, 447-455.	4.2	47
71	Probing Evolutionary Repeatability: Neutral and Double Changes and the Predictability of Evolutionary Adaptation. PLoS ONE, 2009, 4, e4500.	1.1	13
72	Rare Genomic Characters Do Not Support Coelomata: RGC_CAMs. Journal of Molecular Evolution, 2008, 66, 308-315.	0.8	30

#	Article	IF	CITATIONS
73	When good transcripts go bad: artifactual RTâ€PCR â€~splicing' and genome analysis. BioEssays, 2008, 30, 601-605.	1.2	64
74	In response to letter from Benoit Chabot. BioEssays, 2008, 30, 1257-1258.	1.2	1
75	The Caenorhabditis globin gene family reveals extensive nematode-specific radiation and diversification. BMC Evolutionary Biology, 2008, 8, 279.	3.2	32
76	Origin of introns by â€~intronization' of exonic sequences. Trends in Genetics, 2008, 24, 378-381.	2.9	74
77	Patterns of polymorphism in genomic regions flanking three highly polymorphic surface antigens in Plasmodium falciparum. Molecular and Biochemical Parasitology, 2008, 159, 1-6.	0.5	5
78	Intron mis-splicing: no alternative?. Genome Biology, 2008, 9, 208.	13.9	33
79	Spliceosomal introns as tools for genomic and evolutionary analysis. Nucleic Acids Research, 2008, 36, 1703-1712.	6.5	91
80	Origins of Human Malaria: Rare Genomic Changes and Full Mitochondrial Genomes Confirm the Relationship of Plasmodium falciparum to Other Mammalian Parasites but Complicate the Origins of Plasmodium vivax. Molecular Biology and Evolution, 2008, 25, 1192-1198.	3.5	18
81	Rare Genomic Characters Do Not Support Coelomata: Intron Loss/Gain. Molecular Biology and Evolution, 2008, 25, 620-623.	3.5	40
82	Evolutionary Convergence on Highly-Conserved 3′ Intron Structures in Intron-Poor Eukaryotes and Insights into the Ancestral Eukaryotic Genome. PLoS Genetics, 2008, 4, e1000148.	1.5	65
83	Widespread Evolutionary Conservation of Alternatively Spliced Exons in Caenorhabditis. Molecular Biology and Evolution, 2008, 25, 375-382.	3.5	48
84	Evolutionary Conservation of UTR Intron Boundaries in Cryptococcus. Molecular Biology and Evolution, 2007, 24, 1140-1148.	3.5	18
85	On the Incidence of Intron Loss and Gain in Paralogous Gene Families. Molecular Biology and Evolution, 2007, 24, 1579-1581.	3.5	38
86	A Very High Fraction of Unique Intron Positions in the Intron-Rich Diatom Thalassiosira pseudonana Indicates Widespread Intron Gain. Molecular Biology and Evolution, 2007, 24, 1447-1457.	3.5	70
87	Widespread Intron Loss Suggests Retrotransposon Activity in Ancient Apicomplexans. Molecular Biology and Evolution, 2007, 24, 1926-1933.	3.5	33
88	Intron length distributions and gene prediction. Nucleic Acids Research, 2007, 35, 4737-4742.	6.5	45
89	Rare Coding Sequence Changes are Consistent with Ecdysozoa, not Coelomata. Molecular Biology and Evolution, 2007, 24, 1604-1607.	3.5	58
90	Comparative genomic analysis of fungal genomes reveals intron-rich ancestors. Genome Biology, 2007, 8, R223.	13.9	115

#	Article	IF	CITATIONS
91	Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing. BMC Evolutionary Biology, 2007, 7, 188.	3.2	75
92	Coevolution of genomic intron number and splice sites. Trends in Genetics, 2007, 23, 321-325.	2.9	93
93	Very little intron loss/gain in Plasmodium: Intron loss/gain mutation rates and intron number. Genome Research, 2006, 16, 750-756.	2.4	66
94	Smoke Without Fire: Most Reported Cases of Intron Gain in Nematodes Instead Reflect Intron Losses. Molecular Biology and Evolution, 2006, 23, 2259-2262.	3.5	55
95	The evolution of spliceosomal introns: patterns, puzzles and progress. Nature Reviews Genetics, 2006, 7, 211-221.	7.7	544
96	Intron-rich ancestors. Trends in Genetics, 2006, 22, 468-471.	2.9	58
97	Very Little Intron Gain in Entamoeba histolytica Genes Laterally Transferred from Prokaryotes. Molecular Biology and Evolution, 2006, 23, 1824-1827.	3.5	30
98	Large-scale intron conservation and order-of-magnitude variation in intron loss/gain rates in apicomplexan evolution. Genome Research, 2006, 16, 1270-1275.	2.4	43
99	Patterns of Intron Loss and Gain in Plants: Intron Loss-Dominated Evolution and Genome-Wide Comparison of O. sativa and A. thaliana. Molecular Biology and Evolution, 2006, 24, 171-181.	3.5	172
100	Rates of intron loss and gain: Implications for early eukaryotic evolution. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5773-5778.	3.3	193
101	The pattern of intron loss. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 713-718.	3.3	117
102	Complex early genes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1986-1991.	3.3	137
103	Resolution of a deep animal divergence by the pattern of intron conservation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4403-4408.	3.3	58
104	The origin of recent introns: transposons?. Genome Biology, 2004, 5, 251.	13.9	45
105	Recent Evidence for the Exon Theory of Genes. Genetica, 2003, 118, 251-266.	0.5	41
106	Mystery of Intron Gain. Genome Research, 2003, 13, 2236-2241.	2.4	64
107	Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7158-7162.	3.3	193
108	Phylogenetically Older Introns Strongly Correlate With Module Boundaries in Ancient Proteins. Genome Research, 2003, 13, 1155-1157.	2.4	26

#	Article	IF	CITATIONS
109	Recent evidence for the exon theory of genes. Genetica, 2003, 118, 251-66.	0.5	25
110	Nonlinear partial differential equations and applications: The signal of ancient introns is obscured by intron density and homolog number. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15513-15517.	3.3	18
111	Footprints of primordial introns on the eukaryotic genome. Trends in Genetics, 2001, 17, 496-499.	2.9	24
112	Centripetal modules and ancient introns. Gene, 1999, 238, 85-91.	1.0	44
113	The correlation between introns and the three-dimensional structure of proteins. Gene, 1997, 205, 141-144.	1.0	16
114	Expansion and Transformation of the Minor Spliceosomal System in the Slime Mold <i>Physarum polycephalum</i> . SSRN Electronic Journal, 0, , .	0.4	0