
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1126862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The cytokinin-producing plant beneficial bacterium Pseudomonas fluorescens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses. Journal of Plant Physiology, 2022, 270, 153629.	1.6	27
2	Deep-Rooted Plant Species Recruit Distinct Bacterial Communities in the Subsoil. Phytobiomes Journal, 2022, 6, 236-246.	1.4	0
3	Cellulose amendment promotes P solubilization by Penicillium aculeatum in non-sterilized soil. Fungal Biology, 2022, 126, 356-365.	1.1	4
4	Succession of the wheat seed-associated microbiome as affected by soil fertility level and introduction of <i>Penicillium</i> and <i>Bacillus</i> inoculants in the field. FEMS Microbiology Ecology, 2022, 98, .	1.3	5
5	Phosphateâ€solubilising microorganisms for improved crop productivity: a critical assessment. New Phytologist, 2021, 229, 1268-1277.	3.5	98
6	Disentangling the abiotic and biotic components of AMF suppressive soils. Soil Biology and Biochemistry, 2021, 159, 108305.	4.2	17
7	Identification of Root-Associated Bacteria That Influence Plant Physiology, Increase Seed Germination, or Promote Growth of the Christmas Tree Species Abies nordmanniana. Frontiers in Microbiology, 2020, 11, 566613.	1.5	13
8	Interaction between endophytic Proteobacteria strains and Serendipita indica enhances biocontrol activity against fungal pathogens. Plant and Soil, 2020, 451, 277-305.	1.8	27
9	Different sensitivity of a panel of Rhizophagus isolates to AMF-suppressive soils. Applied Soil Ecology, 2020, 155, 103662.	2.1	5
10	Effects of Intra- and Interspecific Plant Density on Rhizosphere Bacterial Communities. Frontiers in Microbiology, 2020, 11, 1045.	1.5	25
11	Under the Christmas Tree: Belowground Bacterial Associations With Abies nordmanniana Across Production Systems and Plant Development. Frontiers in Microbiology, 2020, 11, 198.	1.5	9
12	Editorial: Cross-Frontier Communication: Phytohormone Functions at the Plant-Microbe Interface and Beyond. Frontiers in Plant Science, 2020, 11, 386.	1.7	5
13	Different Effects of Soil Fertilization on Bacterial Community Composition in the <i>Penicillium canescens</i> Hyphosphere and in Bulk Soil. Applied and Environmental Microbiology, 2020, 86, .	1.4	14
14	Root-Associated Microbial Communities of Abies nordmanniana: Insights Into Interactions of Microbial Communities With Antioxidative Enzymes and Plant Growth. Frontiers in Microbiology, 2019, 10, 1937.	1.5	24
15	Suppression of arbuscular mycorrhizal fungal activity in a diverse collection of non-cultivated soils. FEMS Microbiology Ecology, 2019, 95, .	1.3	23
16	Bacterial Dispersers along Preferential Flow Paths of a Clay Till Depth Profile. Applied and Environmental Microbiology, 2019, 85, .	1.4	6
17	Preferential flow paths shape the structure of bacterial communities in a clayey till depth profile. FEMS Microbiology Ecology, 2019, 95, .	1.3	13
18	The Composition and Phosphorus Cycling Potential of Bacterial Communities Associated With Hyphae of Penicillium in Soil Are Strongly Affected by Soil Origin. Frontiers in Microbiology, 2019, 10, 2951.	1.5	19

#	Article	IF	CITATIONS
19	Long-term fertilisation form, level and duration affect the diversity, structure and functioning of soil microbial communities in the field. Soil Biology and Biochemistry, 2018, 122, 91-103.	4.2	134
20	Novel Method Reveals a Narrow Phylogenetic Distribution of Bacterial Dispersers in Environmental Communities Exposed to Low-Hydration Conditions. Applied and Environmental Microbiology, 2018, 84,	1.4	2
21	Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME Journal, 2018, 12, 1296-1307.	4.4	122
22	The biofilm matrix polysaccharides cellulose and alginate both protect Pseudomonas putida mt-2 against reactive oxygen species generated under matric stress and copper exposure. Microbiology (United Kingdom), 2018, 164, 883-888.	0.7	33
23	Adhesion to sand and ability to mineralise low pesticide concentrations are required for efficient bioaugmentation of flow-through sand filters. Applied Microbiology and Biotechnology, 2017, 101, 411-421.	1.7	12
24	Cupriavidus pinatubonensis AEO106 deals with copper-induced oxidative stress before engaging in biodegradation of the herbicide 4-chloro-2-methylphenoxyacetic acid. BMC Microbiology, 2017, 17, 211.	1.3	7
25	A novel baiting microcosm approach used to identify the bacterial community associated with Penicillium bilaii hyphae in soil. PLoS ONE, 2017, 12, e0187116.	1.1	40
26	Nitrogen regulation of the <i>xyl</i> genes of <i>Pseudomonas putida</i> mtâ€2 propagates into a significant effect of nitrate on <i>m</i> â€xylene mineralization in soil. Microbial Biotechnology, 2016, 9, 814-823.	2.0	5
27	Contribution of the seed microbiome to weed management. Weed Research, 2016, 56, 335-339.	0.8	20
28	Pseudomonas putida mt-2 tolerates reactive oxygen species generated during matric stress by inducing a major oxidative defense response. BMC Microbiology, 2015, 15, 202.	1.3	24
29	The biosurfactant viscosin transiently stimulates n-hexadecane mineralization by a bacterial consortium. Applied Microbiology and Biotechnology, 2015, 99, 1475-1483.	1.7	32
30	Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms. Microbiology (United Kingdom), 2015, 161, 2289-2297.	0.7	51
31	Evaluation of the leucine incorporation technique for detection of pollution-induced community tolerance to copper in a long-term agricultural field trial with urban waste fertilizers. Environmental Pollution, 2014, 194, 78-85.	3.7	29
32	Abundance and diversity of culturable Pseudomonas constitute sensitive indicators for adverse long-term copper impacts in soil. Soil Biology and Biochemistry, 2013, 57, 933-935.	4.2	6
33	Selection for Cu-Tolerant Bacterial Communities with Altered Composition, but Unaltered Richness, via Long-Term Cu Exposure. Applied and Environmental Microbiology, 2012, 78, 7438-7446.	1.4	219
34	Proteinase production in <i>Pseudomonas fluorescens</i> ON2 is affected by carbon sources and allows surface-attached but not planktonic cells to utilize protein for growth in lake water. FEMS Microbiology Ecology, 2012, 80, 168-178.	1.3	7
35	Copper bioavailability and impact on bacterial growth in flow-through rainbow trout aquaculture systems. Aquaculture, 2011, 322-323, 259-262.	1.7	3
36	Low Concentration of Copper Inhibits Colonization of Soil by the Arbuscular Mycorrhizal Fungus Glomus intraradices and Changes the Microbial Community Structure. Microbial Ecology, 2011, 61, 844-852.	1.4	14

#	Article	IF	CITATIONS
37	Development of pollution-induced community tolerance is linked to structural and functional resilience of a soil bacterial community following a five-year field exposure to copper. Soil Biology and Biochemistry, 2010, 42, 748-757.	4.2	105
38	Degrader density determines spatial variability of 2,6-dichlorobenzamide mineralisation in soil. Environmental Pollution, 2010, 158, 292-298.	3.7	21
39	2,6-Dichlorobenzamide (BAM) herbicide mineralisation by Aminobacter sp. MSH1 during starvation depends on a subpopulation of intact cells maintaining vital membrane functions. Environmental Pollution, 2010, 158, 3618-3625.	3.7	15
40	Natural functions of lipopeptides from <i>Bacillus</i> and <i>Pseudomonas</i> : more than surfactants and antibiotics. FEMS Microbiology Reviews, 2010, 34, 1037-1062.	3.9	910
41	Vogesella mureinivorans sp. nov., a peptidoglycan-degrading bacterium from lake water. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2467-2472.	0.8	32
42	Cu Exposure under Field Conditions Coselects for Antibiotic Resistance as Determined by a Novel Cultivation-Independent Bacterial Community Tolerance Assay. Environmental Science & Technology, 2010, 44, 8724-8728.	4.6	183
43	Delftia lacustris sp. nov., a peptidoglycan-degrading bacterium from fresh water, and emended description of Delftia tsuruhatensis as a peptidoglycan-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 2195-2199.	0.8	97
44	Effect of Availability of Nitrogen Compounds on Community Structure of Aquatic Bacteria in Model Systems. Microbial Ecology, 2009, 57, 104-116.	1.4	5
45	Bacterial Feeders, the Nematode Caenorhabditis elegans and the Flagellate Cercomonas longicauda, have different Effects on Outcome of Competition among the Pseudomonas Biocontrol Strains CHA0 and DSS73. Microbial Ecology, 2009, 57, 501-509.	1.4	33
46	Functional GacS in <i>Pseudomonas</i> DSS73 prevents digestion by <i>Caenorhabditis elegans</i> and protects the nematode from killer flagellates. ISME Journal, 2009, 3, 770-779.	4.4	22
47	Bacteriophages drive strain diversification in a marine <i>Flavobacterium</i> : implications for phage resistance and physiological properties. Environmental Microbiology, 2009, 11, 1971-1982.	1.8	106
48	Increased Pollution-Induced Bacterial Community Tolerance to Sulfadiazine in Soil Hotspots Amended with Artificial Root Exudates. Environmental Science & amp; Technology, 2009, 43, 2963-2968.	4.6	106
49	Differential bioavailability of copper complexes to bioluminescent <i>Pseudomonas fluorescens</i> reporter strains. Environmental Toxicology and Chemistry, 2008, 27, 2246-2252.	2.2	33
50	Evidence for Bioavailable Copperâ^'Dissolved Organic Matter Complexes and Transiently Increased Copper Bioavailability in Manure-Amended Soils as Determined by Bioluminescent Bacterial Biosensors. Environmental Science & Technology, 2008, 42, 3102-3108.	4.6	60
51	Large Variabilities in Host Strain Susceptibility and Phage Host Range Govern Interactions between Lytic Marine Phages and Their <i>Flavobacterium</i> Hosts. Applied and Environmental Microbiology, 2007, 73, 6730-6739.	1.4	178
52	Initial characterization of abolAhomologue fromPseudomonas fluorescensindicates different roles for BolA-like proteins inP. fluorescensandEscherichia coli. FEMS Microbiology Letters, 2006, 262, 48-56.	0.7	14
53	Early colonization of barley roots by Pseudomonas fluorescens studied by immunofluorescence technique and confocal laser scanning microscopy. FEMS Microbiology Ecology, 2006, 23, 353-360.	1.3	76
54	Decreased abundance and diversity of culturable Pseudomonas spp. populations with increasing copper exposure in the sugar beet rhizosphere. FEMS Microbiology Ecology, 2006, 56, 281-291.	1.3	43

#	Article	IF	CITATIONS
55	BIOAVAILABILITY AND TOXICITY OF SOIL PARTICLE-ASSOCIATED COPPER AS DETERMINED BY TWO BIOLUMINESCENT PSEUDOMONAS FLUORESCENS BIOSENSOR STRAINS. Environmental Toxicology and Chemistry, 2006, 25, 1738.	2.2	40
56	Reporter Genes in Bacterial Inoculants Can Monitor Life Conditions and Functions in Soil. , 2006, , 375-395.		5
57	Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Letters in Applied Microbiology, 2005, 40, 146-151.	1.0	192
58	Genes Involved in Cyclic Lipopeptide Production Are Important for Seed and Straw Colonization by Pseudomonas sp. Strain DSS73. Applied and Environmental Microbiology, 2005, 71, 4112-4116.	1.4	39
59	Time and Moisture Effects on Total and Bioavailable Copper in Soil Water Extracts. Journal of Environmental Quality, 2004, 33, 505-512.	1.0	42
60	Production of Cyclic Lipopeptides by Fluorescent Pseudomonads. , 2004, , 147-172.		44
61	Pseudomonas in the Soil Environment. , 2004, , 369-401.		20
62	Time and Moisture Effects on Total and Bioavailable Copper in Soil Water Extracts. Journal of Environmental Quality, 2004, 33, 505.	1.0	12
63	Functional characteristics of culturable bacterioplankton from marine and estuarine environments. International Microbiology, 2004, 7, 219-27.	1.1	16
64	Boreal forest microbial community after long-term field exposure to acid and metal pollution and its potential remediation by using wood ash. Soil Biology and Biochemistry, 2003, 35, 1517-1526.	4.2	25
65	Effects of copper amendment on the bacterial community in agricultural soil analyzed by the T-RFLP technique. FEMS Microbiology Ecology, 2003, 46, 53-62.	1.3	72
66	Occurrence and degradation of peptidoglycan in aquatic environments. FEMS Microbiology Ecology, 2003, 46, 269-280.	1.3	64
67	Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology (United Kingdom), 2003, 149, 37-46.	0.7	124
68	Lipopeptide Production in Pseudomonas sp. Strain DSS73 Is Regulated by Components of Sugar Beet Seed Exudate via the Gac Two-Component Regulatory System. Applied and Environmental Microbiology, 2002, 68, 4509-4516.	1.4	89
69	Soil and rhizosphere as habitats for Pseudomonas inoculants: new knowledge on distribution, activity and physiological state derived from micro-scale and single-cell studies. , 2002, , 97-108.		7
70	A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. Journal of Microbiological Methods, 2001, 45, 187-195.	0.7	237
71	Title is missing!. Plant and Soil, 2001, 232, 97-108.	1.8	54
72	Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil. FEMS Microbiology Ecology, 2001, 38, 59-67.	1.3	72

#	Article	IF	CITATIONS
73	Input of Protein to Lake Water Microcosms Affects Expression of Proteolytic Enzymes and the Dynamics of Pseudomonas spp. Applied and Environmental Microbiology, 2001, 67, 4955-4962.	1.4	10
74	An Altered Pseudomonas Diversity Is Recovered from Soil by Using Nutrient-Poor Pseudomonas -Selective Soil Extract Media. Applied and Environmental Microbiology, 2001, 67, 5233-5239.	1.4	80
75	Carbon Limitation Induces Ï, S -Dependent Gene Expression in Pseudomonas fluorescens in Soil. Applied and Environmental Microbiology, 2001, 67, 3363-3370.	1.4	68
76	Emergency derepression: stringency allows RNA polymerase to override negative control by an active repressor. Molecular Microbiology, 2000, 35, 435-443.	1.2	51
77	Interactions between proteolytic and non-proteolytic Pseudomonas fluorescens affect protein degradation in a model community. FEMS Microbiology Ecology, 2000, 32, 103-109.	1.3	30
78	Influence of an arbuscular mycorrhizal fungus onPseudomonas fluorescensDF57 in rhizosphere and hyphosphere soil. New Phytologist, 1999, 142, 113-122.	3.5	63
79	Nitrogen Availability to <i>Pseudomonas fluorescens</i> DF57 Is Limited during Decomposition of Barley Straw in Bulk Soil and in the Barley Rhizosphere. Applied and Environmental Microbiology, 1999, 65, 4320-4328.	1.4	56
80	Green Fluorescent Protein-Marked <i>Pseudomonas fluorescens</i> : Localization, Viability, and Activity in the Natural Barley Rhizosphere. Applied and Environmental Microbiology, 1999, 65, 4646-4651.	1.4	121
81	Expression of a nitrogen regulated lux gene fusion in Pseudomonas fluorescens DF57 studied in pure culture and in soil. FEMS Microbiology Ecology, 1998, 25, 23-32.	1.3	24
82	A phosphate-starvation-inducible outer-membrane protein of Pseudomonas fluorescens Ag1 as an immunological phosphate-starvation marker. Microbiology (United Kingdom), 1997, 143, 1019-1027.	0.7	17
83	Release of Alcaligenes eutrophus JMP134 and/or nutrients into seawater mesocosms: Fate of the introduced cells and effects on the ecosystem. Water Research, 1997, 31, 2820-2826.	5.3	0
84	Measurement of bacterivory by heterotrophic nanoflagellates using immunofluorescence labelling of ingested cells. Aquatic Microbial Ecology, 1997, 13, 127-134.	0.9	42
85	Growth and viability of Alcaligenes eutrophus JMP134 in seawater as affected by substrate and nutrient amendment. Letters in Applied Microbiology, 1996, 22, 366-370.	1.0	8
86	Competition between Pseudomonas fluorescens Ag1 and Alcaligenes eutrophus JMP134 (pJP4) during colonization of barley roots. FEMS Microbiology Ecology, 1996, 20, 41-51.	1.3	44
87	Outer Membrane Protein Heterogeneity within Pseudomonas fluorescens and P. putida and Use of an OprF Antibody as a Probe for rRNA Homology Group I Pseudomonads. Applied and Environmental Microbiology, 1996, 62, 480-485.	1.4	38
88	Grazing of nonindigenous bacteria by nano-sized protozoa in a natural coastal system. Microbial Ecology, 1995, 30, 67-78.	1.4	14
89	Isolation of lux reporter gene fusions in Pseudomonas fluorescens DF57 inducible by nitrogen or phosphorus starvation. FEMS Microbiology Ecology, 1995, 17, 95-106.	1.3	61
90	A combined microcosm and mesocosm approach to examine factors affecting survival and mortality of Pseudomonas fluorescens Ag1 in seawater. FEMS Microbiology Ecology, 1995, 17, 107-116.	1.3	16

#	Article	IF	CITATIONS
91	Effects of starvation and osmotic stress on viability and heat resistance of <i>Pseudomonas fluorescens</i> AH9. Journal of Applied Bacteriology, 1994, 77, 340-347.	1.1	40
92	Culturability and Expression of Outer Membrane Proteins during Carbon, Nitrogen, or Phosphorus Starvation of <i>Pseudomonas fluorescens</i> DF57 and <i>Pseudomonas putida</i> DF14. Applied and Environmental Microbiology, 1994, 60, 2944-2948.	1.4	43
93	Enzyme activities in waste water and activated sludge. Water Research, 1992, 26, 579-584.	5.3	125
94	Survival of 2,4-dichlorophenoxyacetic acid degrading Alcaligenes eutrophus AE0106(pR0101) in lake water microcosms. Microbial Ecology, 1992, 24, 291-303.	1.4	21
95	Rapid identification of environmental isolates ofPseudomonas aeruginosa, P. fluorescensandP. putidaby SDS-PAGE analysis of whole-cell protein patterns. FEMS Microbiology Letters, 1992, 101, 41-50.	0.7	32
96	Survival of <i>Bacillus licheniformis</i> in Seawater Model Ecosystems. Applied and Environmental Microbiology, 1992, 58, 252-259.	1.4	32
97	A developmental study of soluble L1. International Journal of Developmental Neuroscience, 1990, 8, 273-275.	0.7	13
98	Enzyme-linked immunosorbent assays for detection of Pseudomonas fluorescens in sediment samples. Letters in Applied Microbiology, 1990, 11, 293-296.	1.0	26
99	Structure and Function of the Neural Cell Adhesion Molecules NCAM and L1. Advances in Experimental Medicine and Biology, 1990, 265, 185-196.	0.8	21
100	Equilibrium Binding Analysis of Neural Cell Adhesion Molecule Binding to Heparin. Journal of Neurochemistry, 1989, 52, 1947-1949.	2.1	40
101	Heterogeneity of Soluble Neural Cell Adhesion Molecule. Journal of Neurochemistry, 1989, 53, 1372-1378.	2.1	41
102	NCAM biosynthesis in brain. Neurochemistry International, 1988, 12, 251-262.	1.9	68
103	Characterization of the biosynthesis, membrane association and function of the cell adhesion molecule L1. Neurochemistry International, 1987, 10, 113-120.	1.9	13
104	Characterization of soluble forms of NCAM. FEBS Letters, 1987, 225, 33-36.	1.3	54
105	Expression of N-CAM polypeptides in neurons. Neurochemistry International, 1986, 9, 539-544.	1.9	14
106	Cell-Free Synthesis of the D2-Cell Adhesion Molecule: Evidence for Three Primary Translation Products. Journal of Neurochemistry, 1985, 44, 712-717.	2.1	34
107	Effects of hypophysectomy and substitution with growth hormone, prolactin, and thyroxine on growth and deposition in juvenile frogs, Xenopus laevis. General and Comparative Endocrinology, 1985, 57, 257-265.	0.8	9
108	Biosynthesis of the neural cell adhesion molecule: characterization of polypeptide C Journal of Cell Biology, 1985, 101, 2310-2315.	2.3	78

#	Article	IF	CITATIONS
109	Purification of γ-enolase messenger ribonucleic acid from rat brain by an immunoadsorption method. Neuroscience Letters, 1985, 53, 115-119.	1.0	Ο