Shao-Cong Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1126822/publications.pdf

Version: 2024-02-01

14124 9346 23,752 173 69 148 citations h-index g-index papers 179 179 179 31860 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Myeloid cell TBK1 restricts inflammatory responses. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	16
2	Cylindromatosis drives synapse pruning and weakening by promoting macroautophagy through Akt-mTOR signaling. Molecular Psychiatry, 2022, 27, 2414-2424.	4.1	14
3	Dapl1 controls NFATc2 activation to regulate CD8+ T cell exhaustion and responses in chronic infection and cancer. Nature Cell Biology, 2022, 24, 1165-1176.	4.6	9
4	TRAF2 regulates T cell immunity by maintaining a Tpl2-ERK survival signaling axis in effector and memory CD8 T cells. Cellular and Molecular Immunology, 2021, 18, 2262-2274.	4.8	9
5	DYRK1a mediates BAFF-induced noncanonical NF-κB activation to promote autoimmunity and B-cell leukemogenesis. Blood, 2021, 138, 2360-2371.	0.6	22
6	Microglia promote autoimmune inflammation via the noncanonical NF-κB pathway. Science Advances, 2021, 7, eabh0609.	4.7	19
7	NF-κB-inducing kinase maintains T cell metabolic fitness in antitumor immunity. Nature Immunology, 2021, 22, 193-204.	7.0	52
8	Targeting ubiquitin signaling for cancer immunotherapy. Signal Transduction and Targeted Therapy, 2021, 6, 16.	7.1	34
9	Peli1 facilitates NLRP3 inflammasome activation by mediating ASC ubiquitination. Cell Reports, 2021, 37, 109904.	2.9	25
10	The E3 ubiquitin ligase Peli1 regulates the metabolic actions of mTORC1 to suppress antitumor T cell responses. EMBO Journal, 2021, 40, e104532.	3.5	14
11	Immune dysregulation in SHARPIN-deficient mice is dependent on CYLD-mediated cell death. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
12	Pellino-1 Regulates the Responses of the Airway to Viral Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 456.	1.8	12
13	Intestinal Epithelial TBK1 Prevents Differentiation of T-helper 17 Cells and Tumorigenesis in Mice. Gastroenterology, 2020, 159, 1793-1806.	0.6	16
14	USP15 suppresses tumor immunity via deubiquitylation and inactivation of TET2. Science Advances, 2020, 6, .	4.7	28
15	TRAF3IP3 negatively regulates cytosolic RNA induced anti-viral signaling by promoting TBK1 K48 ubiquitination. Nature Communications, 2020, 11, 2193.	5.8	33
16	Peli1 signaling blockade attenuates congenital zika syndrome. PLoS Pathogens, 2020, 16, e1008538.	2.1	13
17	A20 restricts inflammation via ubiquitin binding. Nature Immunology, 2020, 21, 362-364.	7.0	7
18	Verteporfin Inhibits PD-L1 through Autophagy and the STAT1â€"IRF1â€"TRIM28 Signaling Axis, Exerting Antitumor Efficacy. Cancer Immunology Research, 2020, 8, 952-965.	1.6	63

#	Article	IF	Citations
19	Cell type-specific function of TRAF2 and TRAF3 in regulating type I IFN induction. Cell and Bioscience, 2019, 9, 5.	2.1	21
20	FGL2 promotes tumor progression in the CNS by suppressing CD103+ dendritic cell differentiation. Nature Communications, 2019, 10, 448.	5.8	65
21	The deubiquitinase Otub1 controls the activation of CD8+ T cells and NK cells by regulating IL-15-mediated priming. Nature Immunology, 2019, 20, 879-889.	7.0	68
22	Preventing abnormal NF-κB activation and autoimmunity by Otub1-mediated p100 stabilization. Cell Research, 2019, 29, 474-485.	5.7	30
23	TBKBP1 and TBK1 form a growth factor signalling axis mediating immunosuppression and tumourigenesis. Nature Cell Biology, 2019, 21, 1604-1614.	4.6	59
24	Lymphatic endothelial cells regulate B-cell homing to lymph nodes via a NIK-dependent mechanism. Cellular and Molecular Immunology, 2019, 16, 165-177.	4.8	19
25	Genetic rescue of lineage-balanced blood cell production reveals a crucial role for STAT3 antiinflammatory activity in hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2311-E2319.	3.3	9
26	TBK1 as a regulator of autoimmunity and antitumor immunity. Cellular and Molecular Immunology, 2018, 15, 743-745.	4.8	11
27	ZRANB1 Is an EZH2 Deubiquitinase and a Potential Therapeutic Target in Breast Cancer. Cell Reports, 2018, 23, 823-837.	2.9	42
28	KAP1 Regulates Regulatory T Cell Function and Proliferation in Both Foxp3-Dependent and -Independent Manners. Cell Reports, 2018, 23, 796-807.	2.9	24
29	Altered Profiles of Gut Microbiota in Klebsiella pneumoniae-Induced Pyogenic Liver Abscess. Current Microbiology, 2018, 75, 952-959.	1.0	9
30	Epigenetic activation during T helper 17 cell differentiation is mediated by Tripartite motif containing 28. Nature Communications, 2018, 9, 1424.	5.8	47
31	Peli1 negatively regulates noncanonical NF-κB signaling to restrain systemic lupus erythematosus. Nature Communications, 2018, 9, 1136.	5.8	55
32	Peli1 Modulates the Subcellular Localization and Activity of Mdmx. Cancer Research, 2018, 78, 2897-2910.	0.4	18
33	FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature, 2018, 564, 130-135.	13.7	174
34	NIK signaling axis regulates dendritic cell function in intestinal immunity and homeostasis. Nature Immunology, 2018, 19, 1224-1235.	7.0	32
35	Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis. Cell Death and Disease, 2018, 9, 592.	2.7	21
36	Deubiquitinases as pivotal regulators of T cell functions. Frontiers of Medicine, 2018, 12, 451-462.	1.5	8

#	Article	IF	CITATIONS
37	TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nature Communications, 2018, 9, 2812.	5.8	25
38	Metabolic control of regulatory T cell stability and function by TRAF3IP3 at the lysosome. Journal of Experimental Medicine, 2018, 215, 2463-2476.	4.2	41
39	Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor Î [®] B and Mitogen-Activated Protein Kinase Pathways. Frontiers in Immunology, 2018, 9, 1849.	2.2	218
40	Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. Journal of Clinical Investigation, 2018, 128, 4980-4991.	3.9	34
41	TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature, 2017, 545, 365-369.	13.7	136
42	The kinase TBK1 functions in dendritic cells to regulate T cell homeostasis, autoimmunity, and antitumor immunity. Journal of Experimental Medicine, 2017, 214, 1493-1507.	4.2	62
43	PELI1 functions as a dual modulator of necroptosis and apoptosis by regulating ubiquitination of RIPK1 and mRNA levels of c-FLIP. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11944-11949.	3.3	83
44	Absence of Grail promotes CD8+ T cell anti-tumour activity. Nature Communications, 2017, 8, 239.	5.8	22
45	NF- $\hat{\mathbb{I}}^{\mathbb{B}}$ B signaling in inflammation. Signal Transduction and Targeted Therapy, 2017, 2, .	7.1	4,812
46	The non-canonical NF-κB pathway in immunity and inflammation. Nature Reviews Immunology, 2017, 17, 545-558.	10.6	1,174
47	The Brain Proteome of the Ubiquitin Ligase Peli1 Knock-Out Mouse during Experimental Autoimmune Encephalomyelitis. Journal of Proteomics and Bioinformatics, 2016, 9, 209-219.	0.4	9
48	Loss of câ€Kit and bone marrow failure upon conditional removal of the <scp>GATA</scp> â€2 Câ€ŧerminal zinc finger domain in adult mice. European Journal of Haematology, 2016, 97, 261-270.	1.1	8
49	Bypassing STAT3-mediated inhibition of the transcriptional regulator ID2 improves the antitumor efficacy of dendritic cells. Science Signaling, 2016, 9, ra94.	1.6	18
50	Cell intrinsic role of NF-κB-inducing kinase in regulating T cell-mediated immune and autoimmune responses. Scientific Reports, 2016, 6, 22115.	1.6	53
51	Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nature Immunology, 2016, 17, 259-268.	7.0	92
52	Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature, 2016, 531, 651-655.	13.7	648
53	Ubiquitin signaling in immune responses. Cell Research, 2016, 26, 457-483.	5.7	372
54	Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. Journal of Experimental Medicine, 2016, 213, 399-414.	4.2	85

#	Article	IF	Citations
55	T Cell Intrinsic USP15 Deficiency Promotes Excessive IFN- $\hat{1}^3$ Production and an Immunosuppressive Tumor Microenvironment in MCA-Induced Fibrosarcoma. Cell Reports, 2015, 13, 2470-2479.	2.9	41
56	NF-κB in inflammation and renal diseases. Cell and Bioscience, 2015, 5, 63.	2.1	238
57	Targeting signaling factors for degradation, an emerging mechanism for <scp>TRAF</scp> functions. Immunological Reviews, 2015, 266, 56-71.	2.8	96
58	Survival and maintenance of regulatory T cells require the kinase TAK1. Cellular and Molecular Immunology, 2015, 12, 572-579.	4.8	20
59	Targeting ubiquitination for cancer therapies. Future Medicinal Chemistry, 2015, 7, 2333-2350.	1.1	85
60	Regulation of T-cell activation and migration by the kinase TBK1 during neuroinflammation. Nature Communications, 2015, 6, 6074.	5.8	87
61	Proinflammatory TLR signalling is regulated by a TRAF2-dependent proteolysis mechanism in macrophages. Nature Communications, 2015, 6, 5930.	5.8	87
62	T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi. Journal of Experimental Medicine, 2015, 212, 1323-1336.	4.2	38
63	FKBP51 employs both scaffold and isomerase functions to promote NF-κB activation in melanoma. Nucleic Acids Research, 2015, 43, 6983-6993.	6.5	68
64	TCR signaling to NF-κB and mTORC1: Expanding roles of the CARMA1 complex. Molecular Immunology, 2015, 68, 546-557.	1.0	22
65	Peli1 negatively regulates type I interferon induction and antiviral immunity in the CNS. Cell and Bioscience, 2015, 5, 34.	2.1	20
66	TPL2 mediates IL-17R signaling in neuroinflammation. Oncotarget, 2015, 6, 21789-21790.	0.8	5
67	STAT3 restrains RANK- and TLR4-mediated signalling by suppressing expression of the E2 ubiquitin-conjugating enzyme Ubc13. Nature Communications, 2014, 5, 5798.	5.8	53
68	T Cellâ€"Intrinsic Function of the Noncanonical NF-κB Pathway in the Regulation of GM-CSF Expression and Experimental Autoimmune Encephalomyelitis Pathogenesis. Journal of Immunology, 2014, 193, 422-430.	0.4	45
69	Noncanonical NF-κB Pathway Controls the Production of Type I Interferons in Antiviral Innate Immunity. Immunity, 2014, 40, 342-354.	6.6	117
70	CYLD regulates spindle orientation by stabilizing astral microtubules and promoting dishevelled-NuMA-dynein/dynactin complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2158-2163.	3.3	93
71	USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses. Nature Immunology, 2014, 15, 562-570.	7.0	204
72	CYLD mediates ciliogenesis in multiple organs by deubiquitinating Cep70 and inactivating HDAC6. Cell Research, 2014, 24, 1342-1353.	5.7	87

#	Article	IF	Citations
73	TRAF3 regulates the effector function of regulatory T cells and humoral immune responses. Journal of Experimental Medicine, 2014, 211, 137-151.	4.2	64
74	TPL2 mediates autoimmune inflammation through activation of the TAK1 axis of IL-17 signaling. Journal of Experimental Medicine, 2014, 211, 1689-1702.	4.2	66
75	Inflammatory T Cell Responses Rely on Amino Acid Transporter ASCT2 Facilitation of Glutamine Uptake and mTORC1 Kinase Activation. Immunity, 2014, 40, 692-705.	6.6	645
76	Molecular Regulation of Adult Hematopoiesis By GATA-2. Blood, 2014, 124, 4337-4337.	0.6	0
77	Activation of the Transcription Factor c-Maf in T Cells Is Dependent on the CARMA1-IKKÎ ² Signaling Cascade. Science Signaling, 2013, 6, ra110.	1.6	11
78	OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3. Nature, 2013, 494, 371-374.	13.7	179
79	Regulation of nuclear factor-κB in autoimmunity. Trends in Immunology, 2013, 34, 282-289.	2.9	223
80	Peli1 promotes microglia-mediated CNS inflammation by regulating Traf3 degradation. Nature Medicine, 2013, 19, 595-602.	15.2	156
81	Ubiquitin-Specific Protease 25 Regulates TLR4-Dependent Innate Immune Responses Through Deubiquitination of the Adaptor Protein TRAF3. Science Signaling, 2013, 6, ra35.	1.6	94
82	TRIM28 mediates chromatin modifications at the TCR $\hat{I}\pm$ enhancer and regulates the development of T and natural killer T cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20083-20088.	3.3	35
83	HTLV-2 Tax Immortalizes Human CD4+ Memory T Lymphocytes by Oncogenic Activation and Dysregulation of Autophagy. Journal of Biological Chemistry, 2012, 287, 34683-34693.	1.6	35
84	The kinase TBK1 controls IgA class switching by negatively regulating noncanonical NF- \hat{l}° B signaling. Nature Immunology, 2012, 13, 1101-1109.	7.0	113
85	Immune receptor signaling: from ubiquitination to NF-κB activation. Cellular and Molecular Immunology, 2012, 9, 97-98.	4.8	2
86	New insight into the oncogenic mechanism of the retroviral oncoprotein Tax. Protein and Cell, 2012, 3, 581-589.	4.8	43
87	Ubc13 maintains the suppressive function of regulatory T cells and prevents their conversion into effector-like T cells. Nature Immunology, 2012, 13, 481-490.	7.0	114
88	Peli: a family of signal-responsive E3 ubiquitin ligases mediating TLR signaling and T-cell tolerance. Cellular and Molecular Immunology, 2012, 9, 113-122.	4.8	49
89	CD2AP/SHIP1 Complex Positively Regulates Plasmacytoid Dendritic Cell Receptor Signaling by Inhibiting the E3 Ubiquitin Ligase Cbl. Journal of Immunology, 2012, 189, 786-792.	0.4	39
90	The noncanonical NFâ€PB pathway. Immunological Reviews, 2012, 246, 125-140.	2.8	604

#	Article	IF	Citations
91	Non-canonical NF-κB signaling pathway. Cell Research, 2011, 21, 71-85.	5.7	905
92	A special issue on NF-κB signaling and function. Cell Research, 2011, 21, 1-2.	5.7	52
93	The ubiquitin ligase Peli1 negatively regulates T cell activation and prevents autoimmunity. Nature Immunology, 2011, 12, 1002-1009.	7.0	169
94	Mutual regulation between deubiquitinase CYLD and retroviral oncoprotein Tax. Cell and Bioscience, 2011, 1, 27.	2.1	18
95	Regulation of antiviral innate immunity by deubiquitinase CYLD. Cellular and Molecular Immunology, 2011, 8, 502-504.	4.8	23
96	The Specificity of Innate Immune Responses Is Enforced by Repression of Interferon Response Elements by NF-κB p50. Science Signaling, 2011, 4, ra11.	1.6	75
97	The E3 ligase câ€Cbl regulates dendritic cell activation. EMBO Reports, 2011, 12, 971-979.	2.0	17
98	Noncanonical NF-κB regulates inducible costimulator (ICOS) ligand expression and T follicular helper cell development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12827-12832.	3.3	68
99	The Notch/Hes1 Pathway Sustains NF-κB Activation through CYLD Repression in T Cell Leukemia. Cancer Cell, 2010, 18, 268-281.	7.7	261
100	RKIP inhibits NFâ€PB in cancer cells by regulating upstream signaling components of the lPB kinase complex. FEBS Letters, 2010, 584, 662-668.	1.3	75
101	The E3 Ubiquitin Ligase GRAIL Regulates T Cell Tolerance and Regulatory T Cell Function by Mediating T Cell Receptor-CD3 Degradation. Immunity, 2010, 32, 670-680.	6.6	121
102	Regulation of natural killer T-cell development by deubiquitinase CYLD. EMBO Journal, 2010, 29, 1600-1612.	3.5	38
103	CYLD: a tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes. Cell Death and Differentiation, 2010, 17, 25-34.	5.0	338
104	Defective feedback regulation of NF-κB underlies Sjögren <i>'</i> s syndrome in mice with mutated κB enhancers of the <i>lκBα</i> promoter. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15193-15198.	3.3	51
105	CARMA1 Regulation of Regulatory T Cell Development Involves Modulation of Interleukin-2 Receptor Signaling. Journal of Biological Chemistry, 2010, 285, 15696-15703.	1.6	31
106	Distinct Signal Codes Generate Dendritic Cell Functional Plasticity. Science Signaling, 2010, 3, ra4.	1.6	113
107	Controlling the Fate of NIK: A Central Stage in Noncanonical NF-κB Signaling. Science Signaling, 2010, 3, pe18.	1.6	49
108	NF-κB as a Target for Oncogenic Viruses. Current Topics in Microbiology and Immunology, 2010, 349, 197-244.	0.7	37

#	Article	IF	CITATIONS
109	TSLP production by epithelial cells exposed to immunodeficiency virus triggers DC-mediated mucosal infection of CD4+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16776-16781.	3.3	49
110	NF- $\hat{\mathbb{I}}^2$ B1 p105 Regulates T Cell Homeostasis and Prevents Chronic Inflammation. Journal of Immunology, 2009, 182, 3131-3138.	0.4	43
111	Regulation of hematopoiesis by the K63-specific ubiquitin-conjugating enzyme Ubc13. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20836-20841.	3.3	27
112	Deregulation of Tpl2 and NF-κB signaling and induction of macrophage apoptosis by the anti-depressant drug lithium. Cellular Signalling, 2009, 21, 559-566.	1.7	18
113	Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nature Immunology, 2009, 10, 1089-1095.	7.0	216
114	Regulation of Th17 cell differentiation and EAE induction by MAP3K NIK. Blood, 2009, 113, 6603-6610.	0.6	79
115	Deubiquitylation and regulation of the immune response. Nature Reviews Immunology, 2008, 8, 501-511.	10.6	299
116	New insights into NF-κB regulation and function. Trends in Immunology, 2008, 29, 469-478.	2.9	254
117	Regulation of $\hat{\mathbb{I}}^{\mathbb{D}}$ B Kinase-related Kinases and Antiviral Responses by Tumor Suppressor CYLD. Journal of Biological Chemistry, 2008, 283, 18621-18626.	1.6	110
118	Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. Journal of Clinical Investigation, 2008, 118, 1858-1866.	3.9	166
119	Activation of NF-κB by the Human T Cell Leukemia Virus Type I Tax Oncoprotein Is Associated with Ubiquitin-dependent Relocalization of lκB Kinase. Journal of Biological Chemistry, 2007, 282, 4185-4192.	1.6	69
120	Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses. Journal of Experimental Medicine, 2007, 204, 1475-1485.	4.2	229
121	Deubiquitinating Enzyme CYLD Regulates the Peripheral Development and Naive Phenotype Maintenance of B Cells. Journal of Biological Chemistry, 2007, 282, 15884-15893.	1.6	61
122	Regulation of Early Wave of Germ Cell Apoptosis and Spermatogenesis by Deubiquitinating Enzyme CYLD. Developmental Cell, 2007, 13, 705-716.	3.1	189
123	Retroviral oncoprotein Tax deregulates NFâ€Î°B by activating Tak1 and mediating the physical association of Tak1–IKK. EMBO Reports, 2007, 8, 510-515.	2.0	67
124	Regulation of T cell development by the deubiquitinating enzyme CYLD. Nature Immunology, 2006, 7, 411-417.	7.0	204
125	\hat{l}^2 -TrCP binding and processing of NF- \hat{l}^8 B2/p100 involve its phosphorylation at serines 866 and 870. Cellular Signalling, 2006, 18, 1309-1317.	1.7	84
126	Phosphorylation of NF-κB1/p105 by oncoprotein kinase Tpl2: Implications for a novel mechanism of Tpl2 regulation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 174-181.	1.9	26

#	Article	IF	Citations
127	Deregulated Activation of Oncoprotein Kinase Tpl2/Cot in HTLV-I-transformed T Cells. Journal of Biological Chemistry, 2006, 281, 14041-14047.	1.6	17
128	Activation of NF-κB by HTLV-I and implications for cell transformation. Oncogene, 2005, 24, 5952-5964.	2.6	217
129	An Atypical Tumor Necrosis Factor (TNF) Receptor-associated Factor-binding Motif of B Cell-activating Factor Belonging to the TNF Family (BAFF) Receptor Mediates Induction of the Noncanonical NF-κB Signaling Pathway. Journal of Biological Chemistry, 2005, 280, 10018-10024.	1.6	101
130	Regulation of the Deubiquitinating Enzyme CYLD by $\hat{\mathbb{I}}^2B$ Kinase Gamma-Dependent Phosphorylation. Molecular and Cellular Biology, 2005, 25, 3886-3895.	1.1	173
131	Regulation of the NF-κB-inducing Kinase by Tumor Necrosis Factor Receptor-associated Factor 3-induced Degradation. Journal of Biological Chemistry, 2004, 279, 26243-26250.	1.6	414
132	lκB Kinase Is an Essential Component of the Tpl2 Signaling Pathway. Molecular and Cellular Biology, 2004, 24, 6040-6048.	1.1	123
133	Induction of p100 Processing by NF- $\hat{\mathbb{P}}$ B-inducing Kinase Involves Docking I $\hat{\mathbb{P}}$ B Kinase $\hat{\mathbb{I}}$ ± (IKK $\hat{\mathbb{I}}$ ±) to p100 and IKK $\hat{\mathbb{I}}$ ±-mediated Phosphorylation. Journal of Biological Chemistry, 2004, 279, 30099-30105.	1.6	250
134	Negative Regulation of JNK Signaling by the Tumor Suppressor CYLD. Journal of Biological Chemistry, 2004, 279, 55161-55167.	1.6	141
135	Deregulation of NF-kappaB and its upstream kinases in cancer. Cancer and Metastasis Reviews, 2003, 22, 405-422.	2.7	76
136	Regulation of NF-κB2/p100 processing by its nuclear shuttling. Oncogene, 2003, 22, 4868-4874.	2.6	37
137	Study of T-cell signaling by somatic cell mutagenesis and complementation cloning. Journal of Immunological Methods, 2003, 278, 293-304.	0.6	10
138	NF-ΰB1/p105 Regulates Lipopolysaccharide-Stimulated MAP Kinase Signaling by Governing the Stability and Function of the Tpl2 Kinase. Molecular Cell, 2003, 11, 685-694.	4.5	195
139	S9, a 19 S Proteasome Subunit Interacting with Ubiquitinated NF-κB2/p100. Journal of Biological Chemistry, 2002, 277, 40697-40702.	1.6	20
140	Genetic Evidence for the Essential Role of \hat{l}^2 -Transducin Repeat-containing Protein in the Inducible Processing of NF- \hat{l}^2 B2/p100. Journal of Biological Chemistry, 2002, 277, 22111-22114.	1.6	128
141	Activation by IKKalpha of a Second, Evolutionary Conserved, NF-kappa B Signaling Pathway. Science, 2001, 293, 1495-1499.	6.0	1,278
142	NF-κB-Inducing Kinase Regulates the Processing of NF-κB2 p100. Molecular Cell, 2001, 7, 401-409.	4.5	765
143	NF-κB Signaling Pathway Governs TRAIL Gene Expression and Human T-cell Leukemia Virus-I Tax-induced T-cell Death. Journal of Biological Chemistry, 2001, 276, 40385-40388.	1.6	91
144	Negative regulation of the nuclear factor $\hat{\mathbb{P}}$ B-inducing kinase by a cis-acting domain Journal of Biological Chemistry, 2001, 276, 6879.	1.6	1

#	Article	IF	Citations
145	Somatic mutagenesis studies of NF-κB signaling in human T cells: evidence for an essential role of IKKγ in NF-κB activation by T-cell costimulatory signals and HTLV-I Tax protein. Oncogene, 2000, 19, 1448-1456.	2.6	111
146	Activation of IKKα and IKKβ through their fusion with HTLV-I Tax protein. Oncogene, 2000, 19, 5198-5203.	2.6	57
147	Negative Regulation of the Nuclear Factor κB-inducing Kinase by a cis-Acting Domain. Journal of Biological Chemistry, 2000, 275, 21081-21085.	1.6	41
148	Activation of I- $^{\text{l}}$ B Kinase by the HTLV Type 1 Tax Protein: Mechanistic Insights into the Adaptor Function of IKK $^{\text{l}}$ 3. AIDS Research and Human Retroviruses, 2000, 16, 1591-1596.	0.5	34
149	The NF-κB Signaling Pathway Is Not Required for Fas Ligand Gene Induction but Mediates Protection from Activation-induced Cell Death. Journal of Biological Chemistry, 2000, 275, 25222-25230.	1.6	49
150	Domain-specific Interaction with the \hat{I}^{g} B Kinase (IKK) Regulatory Subunit IKK \hat{I}^{g} Is an Essential Step in Tax-mediated Activation of IKK. Journal of Biological Chemistry, 2000, 275, 34060-34067.	1.6	92
151	IKKÎ ³ Serves as a Docking Subunit of the lÎ ⁹ B Kinase (IKK) and Mediates Interaction of IKK with the Human T-cell Leukemia Virus Tax Protein. Journal of Biological Chemistry, 1999, 274, 22911-22914.	1.6	216
152	Gene expression profiles in HTLV-I-immortalized T cells: deregulated expression of genes involved in apoptosis regulation. Oncogene, 1999, 18, 1341-1349.	2.6	85
153	Binding of c-Rel to STAT5 target sequences in HTLV-I-transformed T cells. Oncogene, 1999, 18, 1401-1409.	2.6	16
154	Persistent activation of NF-κB by the Tax transforming protein of HTLV-1: hijacking cellular lκB kinases. Oncogene, 1999, 18, 6948-6958.	2.6	178
155	Regulation of RelA Subcellular Localization by a Putative Nuclear Export Signal and p50. Molecular and Cellular Biology, 1999, 19, 7088-7095.	1.1	88
156	Involvement of NF-AT in Type I Human T-cell Leukemia Virus Tax-mediated Fas Ligand Promoter Transactivation. Journal of Biological Chemistry, 1998, 273, 22382-22388.	1.6	32
157	NF-κB-inducing Kinase and lκB Kinase Participate in Human T-cell Leukemia Virus I Tax-mediated NF-κB Activation. Journal of Biological Chemistry, 1998, 273, 21132-21136.	1.6	150
158	lκB Kinases Serve as a Target of CD28 Signaling. Journal of Biological Chemistry, 1998, 273, 25185-25190.	1.6	62
159	The Serine/Threonine Phosphatase Inhibitor Calyculin A Induces Rapid Degradation of IκBβ. Journal of Biological Chemistry, 1997, 272, 5409-5412.	1.6	19
160	Constitutive Dephosphorylation and Activation of a Member of the Nuclear Factor of Activated T Cells, NF-AT1, in Tax-expressing and Type I Human T-cell Leukemia Virus-infected Human T Cells. Journal of Biological Chemistry, 1997, 272, 1425-1428.	1.6	26
161	Calpain Contributes to Silica-Induced lîºB-α Degradation and Nuclear Factor-κB Activation. Archives of Biochemistry and Biophysics, 1997, 342, 383-388.	1.4	71
162	Tetrandrine Inhibits Signal-Induced NF- \hat{l}^{P} B Activation in Rat Alveolar Macrophages. Biochemical and Biophysical Research Communications, 1997, 231, 99-102.	1.0	47

#	Article	IF	CITATIONS
163	Multiple Structural Domains within IκBα Are Required for Its Inducible Degradation by both Cytokines and Phosphatase Inhibitors. Biochemical and Biophysical Research Communications, 1996, 223, 123-128.	1.0	18
164	Bcl-2 Prevents CD95 (Fas/APO-1)-induced Degradation of Lamin B and Poly(ADP-ribose) Polymerase and Restores the NF-Î ² B Signaling Pathway. Journal of Biological Chemistry, 1996, 271, 30354-30359.	1.6	102
165	Transcription of Immune Genes in the Giant Silkmoth, Hyalophora Cecropia, is Augmented by H2O2 and Diminished by Thiol Reagents. FEBS Journal, 1995, 231, 93-98.	0.2	25
166	Activation of NF-κB by Phosphatase Inhibitors Involves the Phosphorylation of IκBα at Phosphatase 2A-sensitive Sites. Journal of Biological Chemistry, 1995, 270, 18347-18351.	1.6	88
167	Structure and Expression of <i>Hemolin</i> , an Insect Member of the Immunoglobulin Gene Superfamily. FEBS Journal, 1995, 230, 920-925.	0.2	6
168	Structure and Expression of Hemolin, an Insect Member of the Immunoglobulin Gene Superfamily. FEBS Journal, 1995, 230, 920-925.	0.2	37
169	κB-like Motifs Regulate the Induction of Immune Genes in Drosophila. Journal of Molecular Biology, 1993, 232, 327-333.	2.0	221
170	Specific immune recognition of insect hemolin. Developmental and Comparative Immunology, 1993, 17, 195-200.	1.0	37
171	Cecropia immunoresponsive factor, an insect immunoresponsive factor with DNA-binding properties similar to nuclear-factor KB. FEBS Journal, 1992, 204, 885-892.	0.2	86
172	Structure and expression of the attacin genes in Hyalophora cecropia. FEBS Journal, 1991, 196, 247-254.	0.2	123
173	Purification of the prophenoloxidase from Hyalophora cecropia and four proteins involved in its activation. Insect Biochemistry, 1989, 19, 629-637.	1.8	76