
Jay W Heinecke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11268075/publications.pdf Version: 2024-02-01

INV W/ HEINECKE

#	Article	IF	CITATIONS
1	The role of oxidized lipoproteins in atherogenesis. Free Radical Biology and Medicine, 1996, 20, 707-727.	2.9	1,238
2	Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. Journal of Clinical Investigation, 2007, 117, 746-756.	8.2	825
3	Macrophage Myeloperoxidase Regulation by Granulocyte Macrophage Colony-Stimulating Factor in Human Atherosclerosis and Implications in Acute Coronary Syndromes. American Journal of Pathology, 2001, 158, 879-891.	3.8	632
4	Dysfunctional HDL and atherosclerotic cardiovascular disease. Nature Reviews Cardiology, 2016, 13, 48-60.	13.7	547
5	ATP-Binding Cassette Transporter A1: A Cell Cholesterol Exporter That Protects Against Cardiovascular Disease. Physiological Reviews, 2005, 85, 1343-1372.	28.8	443
6	Reactive Nitrogen Intermediates Promote Low Density Lipoprotein Oxidation in Human Atherosclerotic Intima. Journal of Biological Chemistry, 1997, 272, 1433-1436.	3.4	422
7	Hypochlorous Acid Oxygenates the Cysteine Switch Domain of Pro-matrilysin (MMP-7). Journal of Biological Chemistry, 2001, 276, 41279-41287.	3.4	414
8	The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13032-13037.	7.1	392
9	Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis, 1998, 141, 1-15.	0.8	386
10	Long-Term Ascorbic Acid Administration Reverses Endothelial Vasomotor Dysfunction in Patients With Coronary Artery Disease. Circulation, 1999, 99, 3234-3240.	1.6	358
11	Mass Spectrometric Quantification of Markers for Protein Oxidation by Tyrosyl Radical, Copper, and Hydroxyl Radical in Low Density Lipoprotein Isolated from Human Atherosclerotic Plaques. Journal of Biological Chemistry, 1997, 272, 3520-3526.	3.4	329
12	The myeloperoxidase system of human phagocytes generates Nε-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation. Journal of Clinical Investigation, 1999, 104, 103-113.	8.2	315
13	Increased atherosclerosis in myeloperoxidase-deficient mice. Journal of Clinical Investigation, 2001, 107, 419-430.	8.2	292
14	Bioluminescence imaging of myeloperoxidase activity in vivo. Nature Medicine, 2009, 15, 455-461.	30.7	291
15	Neuronal expression of myeloperoxidase is increased in Alzheimer's disease. Journal of Neurochemistry, 2004, 90, 724-733.	3.9	278
16	High-density lipoproteins: A consensus statement from the National Lipid Association. Journal of Clinical Lipidology, 2013, 7, 484-525.	1.5	276
17	Ablation of the Inflammatory Enzyme Myeloperoxidase Mitigates Features of Parkinson's Disease in Mice. Journal of Neuroscience, 2005, 25, 6594-6600.	3.6	252
18	Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis. Current Opinion in Lipidology, 1997, 8, 268-274.	2.7	247

#	Article	IF	CITATIONS
19	Human Atherosclerotic Intima and Blood of Patients with Established Coronary Artery Disease Contain High Density Lipoprotein Damaged by Reactive Nitrogen Species. Journal of Biological Chemistry, 2004, 279, 42977-42983.	3.4	246
20	Mass Spectrometric Quantification of 3-Nitrotyrosine, ortho-Tyrosine, and 0,0′-Dityrosine in Brain Tissue of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated Mice, a Model of Oxidative Stress in Parkinson's Disease. Journal of Biological Chemistry, 1999, 274, 34621-34628.	3.4	244
21	A Fluorescent Probe for the Detection of Myeloperoxidase Activity in Atherosclerosis-Associated Macrophages. Chemistry and Biology, 2007, 14, 1221-1231.	6.0	241
22	Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E715-24.	7.1	240
23	Bcl-xL Deamidation Is a Critical Switch in the Regulation of the Response to DNA Damage. Cell, 2002, 111, 51-62.	28.9	220
24	Tyrosine 192 in Apolipoprotein A-I Is the Major Site of Nitration and Chlorination by Myeloperoxidase, but Only Chlorination Markedly Impairs ABCA1-dependent Cholesterol Transport. Journal of Biological Chemistry, 2005, 280, 5983-5993.	3.4	208
25	Thematic review series: The Immune System and Atherogenesis. Lipoprotein-associated inflammatory proteins: markers or mediators of cardiovascular disease?. Journal of Lipid Research, 2005, 46, 389-403.	4.2	202
26	Molecular Chlorine Generated by the Myeloperoxidase-Hydrogen Peroxide-Chloride System of Phagocytes Converts Low Density Lipoprotein Cholesterol into a Family of Chlorinated Sterols. Journal of Biological Chemistry, 1996, 271, 23080-23088.	3.4	201
27	Translation of High-Density Lipoprotein Function Into Clinical Practice. Circulation, 2013, 128, 1256-1267.	1.6	197
28	Oxidation of low density lipoprotein by thiols: superoxide-dependent and -independent mechanisms Journal of Lipid Research, 1993, 34, 2051-2061.	4.2	190
29	Myeloperoxidase Impairs ABCA1-dependent Cholesterol Efflux through Methionine Oxidation and Site-specific Tyrosine Chlorination of Apolipoprotein A-I. Journal of Biological Chemistry, 2006, 281, 9001-9004.	3.4	173
30	Neutrophil Extracellular Trap–Derived Enzymes Oxidize Highâ€Density Lipoprotein: An Additional Proatherogenic Mechanism in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2014, 66, 2532-2544.	5.6	173
31	Impaired Superoxide Production Due to a Deficiency in Phagocyte NADPH Oxidase Fails to Inhibit Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1529-1535.	2.4	171
32	Myeloperoxidase produces nitrating oxidants in vivo. Journal of Clinical Investigation, 2002, 109, 1311-1319.	8.2	168
33	Human Neutrophils Employ the Myeloperoxidase-Hydrogen Peroxide-Chloride System to Oxidize α-Amino Acids to a Family of Reactive Aldehydes. Journal of Biological Chemistry, 1998, 273, 4997-5005.	3.4	167
34	Myeloperoxidase-Generated Oxidants Modulate Left Ventricular Remodeling but Not Infarct Size After Myocardial Infarction. Circulation, 2005, 112, 2812-2820.	1.6	163
35	Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics. Journal of Proteomics, 2015, 113, 388-399.	2.4	163
36	Myeloperoxidase: An Oxidative Pathway for Generating Dysfunctional High-Density Lipoprotein. Chemical Research in Toxicology, 2010, 23, 447-454.	3.3	161

#	Article	IF	CITATIONS
37	Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12224-12229.	7.1	160
38	Humans With Atherosclerosis Have Impaired ABCA1 Cholesterol Efflux and Enhanced High-Density Lipoprotein Oxidation by Myeloperoxidase. Circulation Research, 2014, 114, 1733-1742.	4.5	158
39	Oxidative stress and endothelial dysfunction in vascular disease. Current Diabetes Reports, 2007, 7, 257-264.	4.2	153
40	Expression of Human Myeloperoxidase by Macrophages Promotes Atherosclerosis in Mice. Circulation, 2005, 111, 2798-2804.	1.6	152
41	Caloric Restriction Attenuates Dityrosine Cross-Linking of Cardiac and Skeletal Muscle Proteins in Aging Mice. Archives of Biochemistry and Biophysics, 1997, 346, 74-80.	3.0	148
42	Myeloperoxidase Targets Apolipoprotein A-I, the Major High Density Lipoprotein Protein, for Site-Specific Oxidation in Human Atherosclerotic Lesions. Journal of Biological Chemistry, 2012, 287, 6375-6386.	3.4	148
43	S100A9 Differentially Modifies Phenotypic States of Neutrophils, Macrophages, and Dendritic Cells. Circulation, 2011, 123, 1216-1226.	1.6	147
44	Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity. Journal of Lipid Research, 2015, 56, 1519-1530.	4.2	147
45	Free radical modification of low-density lipoprotein: Mechanisms and biological consequences. Free Radical Biology and Medicine, 1987, 3, 65-73.	2.9	144
46	Cholesterol Chlorohydrin Synthesis by the Myeloperoxidase-Hydrogen Peroxide-Chloride System: Potential Markers for Lipoproteins Oxidatively Damaged by Phagocytes. Biochemistry, 1994, 33, 10127-10136.	2.5	143
47	Mechanisms for Oxidative Stress in Diabetic Cardiovascular Disease. Antioxidants and Redox Signaling, 2007, 9, 955-969.	5.4	141
48	Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18686-18691.	7.1	140
49	The HDL proteome: a marker–and perhaps mediator–of coronary artery disease. Journal of Lipid Research, 2009, 50, S167-S171.	4.2	140
50	Mass spectrometric quantification of amino acid oxidation products in proteins: insights into pathways that promote LDL oxidation in the human artery wall. FASEB Journal, 1999, 13, 1113-1120.	0.5	139
51	Human Neutrophils Employ Myeloperoxidase To Convert α-Amino Acids to a Battery of Reactive Aldehydes:  A Pathway for Aldehyde Generation at Sites of Inflammation. Biochemistry, 1998, 37, 6864-6873.	2.5	138
52	Artifact-Free Quantification of Free 3-Chlorotyrosine, 3-Bromotyrosine, and 3-Nitrotyrosine in Human Plasma by Electron Capture–Negative Chemical Ionization Gas Chromatography Mass Spectrometry and Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry. Analytical Biochemistry, 2002, 300, 252-259.	2.4	138
53	A hydroxyl radical–like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. Journal of Clinical Investigation, 2001, 107, 853-860.	8.2	135
54	Oxidative stress: new approaches to diagnosis and prognosis in atherosclerosis. American Journal of Cardiology, 2003, 91, 12-16.	1.6	133

#	Article	IF	CITATIONS
55	Mechanisms of oxidative damage by myeloperoxidase in atherosclerosis and other inflammatory disorders. Translational Research, 1999, 133, 321-325.	2.3	132
56	Hypochlorous Acid Generated by Myeloperoxidase Modifies Adjacent Tryptophan and Glycine Residues in the Catalytic Domain of Matrix Metalloproteinase-7 (Matrilysin). Journal of Biological Chemistry, 2003, 278, 28403-28409.	3.4	132
57	Monocyte Chemoattractant Protein-1 Deficiency Fails to Restrain Macrophage Infiltration Into Adipose Tissue. Diabetes, 2008, 57, 1254-1261.	0.6	130
58	Phagocytes Produce 5-Chlorouracil and 5-Bromouracil, Two Mutagenic Products of Myeloperoxidase, in Human Inflammatory Tissue. Journal of Biological Chemistry, 2003, 278, 23522-23528.	3.4	128
59	Human Phagocytes Employ the Myeloperoxidase-Hydrogen Peroxide System to Synthesize Dityrosine, Trityrosine, Pulcherosine, and Isodityrosine by a Tyrosyl Radical-dependent Pathway. Journal of Biological Chemistry, 1996, 271, 19950-19956.	3.4	126
60	Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease. Diabetes, 2020, 69, 508-516.	0.6	126
61	Combined Statin and Niacin Therapy Remodels the High-Density Lipoprotein Proteome. Circulation, 2008, 118, 1259-1267.	1.6	125
62	Mass Spectrometric Quantification of 3-Chlorotyrosine in Human Tissues with Attomole Sensitivity. Free Radical Biology and Medicine, 1997, 23, 909-916.	2.9	124
63	Immunohistochemical Detection of Myeloperoxidase and Its Oxidation Products in Kupffer Cells of Human Liver. American Journal of Pathology, 2001, 159, 2081-2088.	3.8	124
64	Modifying Apolipoprotein A-I by Malondialdehyde, but Not by an Array of Other Reactive Carbonyls, Blocks Cholesterol Efflux by the ABCA1 Pathway. Journal of Biological Chemistry, 2010, 285, 18473-18484.	3.4	124
65	Advanced Glycation End Product Precursors Impair ABCA1-Dependent Cholesterol Removal From Cells. Diabetes, 2005, 54, 2198-2205.	0.6	120
66	Hydroxyl radical generation during exercise increases mitochondrial protein oxidation and levels of urinary dityrosine. Free Radical Biology and Medicine, 1999, 27, 186-192.	2.9	116
67	High-Density Lipoprotein Suppresses the Type I Interferon Response, a Family of Potent Antiviral Immunoregulators, in Macrophages Challenged With Lipopolysaccharide. Circulation, 2010, 122, 1919-1927.	1.6	116
68	Production of Brominating Intermediates by Myeloperoxidase. Journal of Biological Chemistry, 2001, 276, 7867-7875.	3.4	113
69	Lysine Residues Direct the Chlorination of Tyrosines in YXXK Motifs of Apolipoprotein A-I When Hypochlorous Acid Oxidizes High Density Lipoprotein. Journal of Biological Chemistry, 2004, 279, 7856-7866.	3.4	112
70	Tyrosyl radical production by myeloperoxidase: a phagocyte pathway for lipid peroxidation and dityrosine cross-linking of proteins. Toxicology, 2002, 177, 11-22.	4.2	111
71	Myeloperoxidase-catalyzed 3-chlorotyrosine formation in dialysis patients. Free Radical Biology and Medicine, 2001, 31, 1163-1169.	2.9	110
72	Molecular Chlorine Generated by the Myeloperoxidase-Hydrogen Peroxide-Chloride System of Phagocytes Produces 5-Chlorocytosine in Bacterial RNA. Journal of Biological Chemistry, 1999, 274, 33440-33448.	3.4	109

#	Article	lF	CITATIONS
73	Myeloperoxidase Plays Critical Roles in Killing <i>Klebsiella pneumoniae</i> and Inactivating Neutrophil Elastase: Effects on Host Defense. Journal of Immunology, 2005, 174, 1557-1565.	0.8	109
74	Myeloperoxidase Inactivates TIMP-1 by Oxidizing Its N-terminal Cysteine Residue. Journal of Biological Chemistry, 2007, 282, 31826-31834.	3.4	109
75	Nitrogen dioxide radical generated by the myeloperoxidase-hydrogen peroxide-nitrite system promotes lipid peroxidation of low density lipoprotein. FEBS Letters, 1999, 455, 243-246.	2.8	108
76	Acrolein Impairs ATP Binding Cassette Transporter A1-dependent Cholesterol Export from Cells through Site-specific Modification of Apolipoprotein A-I. Journal of Biological Chemistry, 2005, 280, 36386-36396.	3.4	108
77	Hyperlipidemia in Concert With Hyperglycemia Stimulates the Proliferation of Macrophages in Atherosclerotic Lesions: Potential Role of Glucose-Oxidized LDL. Diabetes, 2004, 53, 3217-3225.	0.6	106
78	Generation of Intramolecular and Intermolecular Sulfenamides, Sulfinamides, and Sulfonamides by Hypochlorous Acid:  A Potential Pathway for Oxidative Cross-Linking of Low-Density Lipoprotein by Myeloperoxidase. Biochemistry, 2002, 41, 1293-1301.	2.5	105
79	Oxidized amino acids: culprits in human atherosclerosis and indicators of oxidative stress 1,2 1This article is part of a series of reviews on "Oxidatively Modified Proteins in Aging and Disease.―The full list of papers may be found on the homepage of the journal. 2Guest Editor: Earl Stadtman. Free Radical Biology and Medicine. 2002. 32. 1090-1101.	2.9	104
80	Myeloperoxidase: an inflammatory enzyme for generating dysfunctional high density lipoprotein. Current Opinion in Cardiology, 2006, 21, 322-328.	1.8	104
81	p-Hydroxyphenylacetaldehyde Is the Major Product of L-Tyrosine Oxidation by Activated Human Phagocytes. Journal of Biological Chemistry, 1996, 271, 1861-1867.	3.4	99
82	Is the Emperor Wearing Clothes?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1261-1264.	2.4	98
83	Spectral Index for Assessment of Differential Protein Expression in Shotgun Proteomics. Journal of Proteome Research, 2008, 7, 845-854.	3.7	97
84	Human Neutrophils Use the Myeloperoxidase-Hydrogen Peroxide-Chloride System to Chlorinate but Not Nitrate Bacterial Proteins during Phagocytosis. Journal of Biological Chemistry, 2002, 277, 30463-30468.	3.4	93
85	Isotope Dilution Mass Spectrometric Quantification of 3-Nitrotyrosine in Proteins and Tissues Is Facilitated by Reduction to 3-Aminotyrosine. Analytical Biochemistry, 1998, 259, 127-135.	2.4	92
86	Detecting oxidative modification of biomolecules with isotope dilution mass spectrometry: Sensitive and quantitative assays for oxidized amino acids in proteins and tissues. Methods in Enzymology, 1999, 300, 124-144.	1.0	91
87	Unique Proteomic Signatures Distinguish Macrophages and Dendritic Cells. PLoS ONE, 2012, 7, e33297.	2.5	91
88	Cholesterol Mass Efflux Capacity, Incident Cardiovascular Disease, and Progression of Carotid Plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 89-96.	2.4	91
89	HDL, lipid peroxidation, and atherosclerosis. Journal of Lipid Research, 2009, 50, 599-601.	4.2	88
90	Anti-Inflammatory Effects of HDL (High-Density Lipoprotein) in Macrophages Predominate Over Proinflammatory Effects in Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e253-e272.	2.4	86

#	Article	IF	CITATIONS
91	Myeloperoxidase Generates 5-Chlorouracil in Human Atherosclerotic Tissue. Journal of Biological Chemistry, 2006, 281, 3096-3104.	3.4	84
92	The Interplay between Size, Morphology, Stability, and Functionality of High-Density Lipoprotein Subclasses. Biochemistry, 2008, 47, 4770-4779.	2.5	84
93	Myeloperoxidase produces nitrating oxidants in vivo. Journal of Clinical Investigation, 2002, 109, 1311-1319.	8.2	84
94	Oxidative Cross-linking of Tryptophan to Glycine Restrains Matrix Metalloproteinase Activity. Journal of Biological Chemistry, 2004, 279, 6209-6212.	3.4	83
95	Paraoxonase-Gene Polymorphisms Associated with Coronary Heart Disease: Support for the Oxidative Damage Hypothesis?. American Journal of Human Genetics, 1998, 62, 20-24.	6.2	82
96	Lipoproteomics: using mass spectrometry-based proteomics to explore the assembly, structure, and function of lipoproteins. Journal of Lipid Research, 2009, 50, 1967-1975.	4.2	81
97	Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export. Journal of Lipid Research, 2010, 51, 1849-1858.	4.2	81
98	Misincorporation of free m-tyrosine into cellular proteins: a potential cytotoxic mechanism for oxidized amino acids. Biochemical Journal, 2006, 395, 277-284.	3.7	80
99	Exchange of Apolipoprotein A-I between Lipid-associated and Lipid-free States. Journal of Biological Chemistry, 2010, 285, 18847-18857.	3.4	78
100	p-Hydroxyphenylacetaldehyde, the Major Product of l-Tyrosine Oxidation by the Myeloperoxidase-H2O2-Chloride System of Phagocytes, Covalently Modifies Îμ-Amino Groups of Protein Lysine Residues. Journal of Biological Chemistry, 1997, 272, 16990-16998.	3.4	77
101	Type 1 diabetes promotes disruption of advanced atherosclerotic lesions in LDL receptor-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2082-2087.	7.1	76
102	MMP-9 Sheds the \hat{I}^22 Integrin Subunit (CD18) from Macrophages. Molecular and Cellular Proteomics, 2009, 8, 1044-1060.	3.8	76
103	Quantification of HDL Particle Concentration by Calibrated Ion Mobility Analysis. Clinical Chemistry, 2014, 60, 1393-1401.	3.2	76
104	and Plaque Inflammation. Circulation, 2019, 140, 1170-1184.	1.6	76
105	Increased apolipoprotein C3 drives cardiovascular risk in type 1 diabetes. Journal of Clinical Investigation, 2019, 129, 4165-4179.	8.2	76
106	Increased oxidative stress in kwashiorkor. Journal of Pediatrics, 2000, 137, 421-424.	1.8	75
107	Production of NÂ-(Carboxymethyl)Lysine Is Impaired in Mice Deficient in NADPH Oxidase: A Role for Phagocyte-Derived Oxidants in the Formation of Advanced Glycation End Products During Inflammation. Diabetes, 2003, 52, 2137-2143.	0.6	75
108	Cholesterol efflux capacity, macrophage reverse cholesterol transport and cardioprotective HDL. Current Opinion in Lipidology, 2015, 26, 388-393.	2.7	75

#	Article	IF	CITATIONS
109	Pathways for oxidation of low density lipoprotein by myeloperoxidase: tyrosyl radical, reactive aldehydes, hypochlorous acid and molecular chlorine. BioFactors, 1997, 6, 145-155.	5.4	74
110	Low Clusterin Levels in High-Density Lipoprotein Associate With Insulin Resistance, Obesity, and Dyslipoproteinemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2528-2534.	2.4	72
111	Electron Paramagnetic Resonance Detection of Free Tyrosyl Radical Generated by Myeloperoxidase, Lactoperoxidase, and Horseradish Peroxidase. Journal of Biological Chemistry, 1998, 273, 32030-32037.	3.4	71
112	Serum amyloid A3 does not contribute to circulating SAA levels. Journal of Lipid Research, 2009, 50, 1353-1362.	4.2	71
113	A Macrophage Sterol-Responsive Network Linked to Atherogenesis. Cell Metabolism, 2010, 11, 125-135.	16.2	69
114	Modification of proteins and lipids by myeloperoxidase. Methods in Enzymology, 1999, 300, 88-105.	1.0	68
115	Iron overload diminishes atherosclerosis in apoE-deficient mice. Journal of Clinical Investigation, 2001, 107, 1545-1553.	8.2	67
116	Lipoprotein oxidation in cardiovascular disease: chief culprit or innocent bystander?. Journal of Experimental Medicine, 2006, 203, 813-816.	8.5	65
117	p-Hydroxyphenylacetaldehyde, an Aldehyde Generated by Myeloperoxidase, Modifies Phospholipid Amino Groups of Low Density Lipoprotein in Human Atherosclerotic Intima. Journal of Biological Chemistry, 2000, 275, 9957-9962.	3.4	64
118	The Eosinophil Peroxidase-Hydrogen Peroxide-Bromide System of Human Eosinophils Generates 5-Bromouracil, a Mutagenic Thymine Analogue. Biochemistry, 2001, 40, 2052-2059.	2.5	63
119	Fatty Streak Formation in Fat-Fed Mice Expressing Human Copper-Zinc Superoxide Dismutase. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 1734-1740.	2.4	61
120	Oxidative Tyrosylation of HDL Enhances the Depletion of Cellular Cholesteryl Esters by a Mechanism Independent of Passive Sterol Desorptionâ€. Biochemistry, 1996, 35, 15188-15197.	2.5	60
121	NADPH Oxidase Restrains the Matrix Metalloproteinase Activity of Macrophages. Journal of Biological Chemistry, 2005, 280, 30201-30205.	3.4	59
122	Mechanisms of oxidative stress in diabetes: implications for the pathogenesis of vascular disease and antioxidant therapy. Frontiers in Bioscience - Landmark, 2004, 9, 565.	3.0	59
123	A new era for quantifying HDL and cardiovascular risk?. Nature Medicine, 2012, 18, 1346-1347.	30.7	58
124	Copper lons Promote Peroxidation of Low Density Lipoprotein Lipid by Binding to Histidine Residues of Apolipoprotein B100, But They Are Reduced at Other Sites on LDL. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 3338-3346.	2.4	57
125	NADPH Oxidase of Neutrophils Elevates 0,0′-Dityrosine Cross-Links in Proteins and Urine during Inflammation. Archives of Biochemistry and Biophysics, 2001, 395, 69-77.	3.0	57
126	High density lipoprotein is targeted for oxidation by myeloperoxidase in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2013, 72, 1725-1731.	0.9	56

#	Article	IF	CITATIONS
127	The biological activity of FasL in human and mouse lungs is determined by the structure of its stalk region. Journal of Clinical Investigation, 2011, 121, 1174-1190.	8.2	56
128	Human neutrophils employ the myeloperoxidase/hydrogen peroxide/chloride system to oxidatively damage apolipoprotein A-I. FEBS Journal, 2001, 268, 3523-3531.	0.2	55
129	The protein cargo of HDL: Implications for vascular wall biology and therapeutics. Journal of Clinical Lipidology, 2010, 4, 371-375.	1.5	54
130	A consensus model of human apolipoprotein A-I in its monomeric and lipid-free state. Nature Structural and Molecular Biology, 2017, 24, 1093-1099.	8.2	54
131	Reactive Carbonyls and Polyunsaturated Fatty Acids Produce a Hydroxyl Radical-like Species. Journal of Biological Chemistry, 2005, 280, 22706-22714.	3.4	53
132	Patients With Coronary Endothelial Dysfunction Have Impaired Cholesterol Efflux Capacity and Reduced HDL Particle Concentration. Circulation Research, 2016, 119, 83-90.	4.5	52
133	Niacin Therapy Increases High-Density Lipoprotein Particles and Total Cholesterol Efflux Capacity But Not ABCA1-Specific Cholesterol Efflux in Statin-Treated Subjects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 404-411.	2.4	51
134	Hypochlorous Acid Produced by the Myeloperoxidase System of Human Phagocytes Induces Covalent Cross-Links between DNA and Proteinâ€. Biochemistry, 2001, 40, 3648-3656.	2.5	50
135	Cholesterol Efflux Capacity and Subclasses of HDL Particles in Healthy Women Transitioning Through Menopause. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3419-3428.	3.6	50
136	Markers of protein oxidation by hydroxyl radical and reactive nitrogen species in tissues of aging rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R453-R461.	1.8	49
137	Vitamin C fails to protect amino acids and lipids from oxidation during acute inflammation. Free Radical Biology and Medicine, 2006, 40, 1494-1501.	2.9	49
138	Acrolein Modifies Apolipoprotein A-I in the Human Artery Wall. Annals of the New York Academy of Sciences, 2005, 1043, 396-403.	3.8	48
139	Phospholipid Transfer Protein in Human Plasma Associates with Proteins Linked to Immunity and Inflammation. Biochemistry, 2010, 49, 7314-7322.	2.5	47
140	A Cluster of Proteins Implicated in Kidney Disease Is Increased in High-Density Lipoprotein Isolated from Hemodialysis Subjects. Journal of Proteome Research, 2015, 14, 2792-2806.	3.7	46
141	Oxidized amino acids in the urine of aging rats: potential markers for assessing oxidative stress in vivo. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R128-R135.	1.8	45
142	Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol efflux capacity via the ABCA1 pathway. Journal of Lipid Research, 2016, 57, 246-257.	4.2	43
143	Diabetes Impairs Cellular Cholesterol Efflux From ABCA1 to Small HDL Particles. Circulation Research, 2020, 127, 1198-1210.	4.5	41
144	Time to ditch HDL-C as a measure of HDL function?. Current Opinion in Lipidology, 2017, 28, 414-418.	2.7	40

#	Article	IF	CITATIONS
145	High Concentration of Medium-Sized HDL Particles and Enrichment in HDL Paraoxonase 1 Associate With Protection From Vascular Complications in People With Long-standing Type 1 Diabetes. Diabetes Care, 2020, 43, 178-186.	8.6	39
146	Quantifying HDL proteins by mass spectrometry: how many proteins are there and what are their functions?. Expert Review of Proteomics, 2018, 15, 31-40.	3.0	37
147	Plasminogen promotes cholesterol efflux by the ABCA1 pathway. JCI Insight, 2017, 2, .	5.0	36
148	Cellular mechanisms for the oxidative modification of lipoproteins. Coronary Artery Disease, 1994, 5, 205-210.	0.7	35
149	Methionine Sulfoxide and Proteolytic Cleavage Contribute to the Inactivation of Cathepsin G by Hypochlorous Acid. Journal of Biological Chemistry, 2005, 280, 29311-29321.	3.4	32
150	Impact of HDL oxidation by the myeloperoxidase system on sterol efflux by the ABCA1 pathway. Journal of Proteomics, 2011, 74, 2289-2299.	2.4	32
151	Elevated levels of protein-bound p-hydroxyphenylacetaldehyde, an amino-acid-derived aldehyde generated by myeloperoxidase, are present in human fatty streaks, intermediate lesions and advanced atherosclerotic lesions. Biochemical Journal, 2000, 352, 693-699.	3.7	32
152	Is lipid peroxidation relevant to atherogenesis?. Journal of Clinical Investigation, 1999, 104, 135-136.	8.2	31
153	Small HDL Promotes Cholesterol Efflux by the ABCA1 Pathway in Macrophages. Circulation Research, 2015, 116, 1101-1103.	4.5	30
154	The role of myeloperoxidase in HDL oxidation and atherogenesis. Current Atherosclerosis Reports, 2007, 9, 249-251.	4.8	29
155	Using Tandem Mass Spectrometry to Quantify Siteâ€Specific Chlorination and Nitration of Proteins: Model System Studies with Highâ€Density Lipoprotein Oxidized by Myeloperoxidase. Methods in Enzymology, 2008, 440, 33-63.	1.0	29
156	Modification of Type III VLDL, Their Remnants, and VLDL From ApoE-Knockout Mice by p -Hydroxyphenylacetaldehyde, a Product of Myeloperoxidase Activity, Causes Marked Cholesteryl Ester Accumulation in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 1238-1249.	2.4	28
157	Oxidized HDL. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1488-1490.	2.4	28
158	Testosterone replacement in hypogonadal men alters the HDL proteome but not HDL cholesterol efflux capacity. Journal of Lipid Research, 2012, 53, 1376-1383.	4.2	28
159	Specific Sequence Motifs Direct the Oxygenation and Chlorination of Tryptophan by Myeloperoxidaseâ€. Biochemistry, 2006, 45, 3961-3971.	2.5	25
160	An Experimentally Robust Model of Monomeric Apolipoprotein A-I Created from a Chimera of Two X-ray Structures and Molecular Dynamics Simulations. Biochemistry, 2014, 53, 7625-7640.	2.5	24
161	Impact of Mifepristone, a Glucocorticoid/Progesterone Antagonist, on HDL Cholesterol, HDL Particle Concentration, and HDL Function. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 1598-1605.	3.6	23
162	Targeted Proteomics Identifies Paraoxonase/Arylesterase 1 (PON1) and Apolipoprotein Cs as Potential Risk Factors for Hypoalphalipoproteinemia in Diabetic Subjects Treated with Fenofibrate and Rosiglitazone. Molecular and Cellular Proteomics, 2016, 15, 1083-1093.	3.8	23

#	Article	IF	CITATIONS
163	Myeloperoxidase and inflammatory proteins: Pathways for generating dysfunctional high-density lipoprotein in humans. Current Atherosclerosis Reports, 2007, 9, 417-424.	4.8	22
164	A sensitive and specific ELISA detects methionine sulfoxide-containing apolipoprotein A-I in HDL. Journal of Lipid Research, 2009, 50, 586-594.	4.2	21
165	Increased uptake of α-hydroxy aldehyde-modified low density lipoprotein by macrophage scavenger receptors. Journal of Lipid Research, 2000, 41, 1054-1059.	4.2	21
166	HDL's Protein Cargo. Circulation, 2013, 127, 868-869.	1.6	20
167	Albuminuria, the High-Density Lipoprotein Proteome, and Coronary Artery Calcification in Type 1 Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1483-1491.	2.4	20
168	Eosinophil-dependent bromination in the pathogenesis of asthma. Journal of Clinical Investigation, 2000, 105, 1331-1332.	8.2	20
169	Synthesis, Isolation, and Characterization of the Adduct Formed in the Reaction of p-Hydroxyphenyl- acetaldehyde with the Amino Headgroup of Phosphatidylethanolamine and Phosphatidylserine. Chemical Research in Toxicology, 1999, 12, 19-27.	3.3	19
170	Acute sex steroid withdrawal increases cholesterol efflux capacity and HDL-associated clusterin in men. Steroids, 2012, 77, 454-460.	1.8	19
171	Genetic control of the mouse HDL proteome defines HDL traits, function, and heterogeneity. Journal of Lipid Research, 2019, 60, 594-608.	4.2	19
172	Clinical trials of vitamin E in coronary artery disease: Is it time to reconsider the low-density lipoprotein oxidation hypothesis?. Current Atherosclerosis Reports, 2003, 5, 83-87.	4.8	18
173	GM-CSF driven myeloid cells in adipose tissue link weight gain and insulin resistance via formation of 2-aminoadipate. Scientific Reports, 2018, 8, 11485.	3.3	18
174	Atherosclerosis Regression and Cholesterol Efflux in Hypertriglyceridemic Mice. Circulation Research, 2021, 128, 690-705.	4.5	18
175	Sex steroids mediate discrete effects on HDL cholesterol efflux capacity and particle concentration in healthy men. Journal of Clinical Lipidology, 2018, 12, 1072-1082.	1.5	17
176	Apolipoprotein A1 Forms 5/5 and 5/4 Antiparallel Dimers in Human High-density Lipoprotein. Molecular and Cellular Proteomics, 2019, 18, 854a-864.	3.8	17
177	Elevated levels of protein-bound p-hydroxyphenylacetaldehyde, an amino-acid-derived aldehyde generated by myeloperoxidase, are present in human fatty streaks, intermediate lesions and advanced atherosclerotic lesions. Biochemical Journal, 2000, 352, 693.	3.7	16
178	Myeloperoxidase: A Therapeutic Target for Preventing Insulin Resistance and the Metabolic Sequelae of Obesity?. Diabetes, 2014, 63, 4001-4003.	0.6	16
179	Identification and quantification of mutagenic halogenated cytosines by gas chromatography, fast atom bombardment, and electrospray ionization tandem mass spectrometry. Analytical Biochemistry, 2003, 317, 201-209.	2.4	15
180	Hypochlorous Acid Converts the γ-Glutamyl Group of Glutathione Disulfide to 5-Hydroxybutyrolactam, a Potential Marker for Neutrophil Activation. Journal of Biological Chemistry, 2009, 284, 26908-26917.	3.4	15

#	Article	IF	CITATIONS
181	Cholesterol Accumulation Regulates Expression of Macrophage Proteins Implicated in Proteolysis and Complement Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2910-2918.	2.4	14
182	Niacin Increases Atherogenic Proteins in High-Density Lipoprotein of Statin-Treated Subjects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2330-2341.	2.4	14
183	Biochemical evidence for a link between elevated levels of homocysteine and lipid peroxidation in vivo. Current Atherosclerosis Reports, 1999, 1, 87-89.	4.8	13
184	Chemical knockout of C-reactive protein in cardiovascular disease. Nature Chemical Biology, 2006, 2, 300-301.	8.0	13
185	Association of apolipoprotein C3 with insulin resistance and coronary artery calcium in patients with type 1 diabetes. Journal of Clinical Lipidology, 2021, 15, 235-242.	1.5	13
186	CREBH normalizes dyslipidemia and halts atherosclerosis in diabetes by decreasing circulating remnant lipoproteins. Journal of Clinical Investigation, 2021, 131, .	8.2	12
187	8-Nitroxanthine, a product of myeloperoxidase, peroxynitrite, and activated human neutrophils, enhances generation of superoxide by xanthine oxidase. Archives of Biochemistry and Biophysics, 2003, 418, 1-12.	3.0	11
188	Hematopoietic ABCA1 deletion promotes monocytosis and worsens diet-induced insulin resistance in mice. Journal of Lipid Research, 2016, 57, 100-108.	4.2	11
189	Apolipoprotein A-I modulates HDL particle size in the absence of apolipoprotein A-II. Journal of Lipid Research, 2021, 62, 100099.	4.2	10
190	Conformational flexibility of apolipoprotein A-I amino- and carboxy-termini is necessary for lipid binding but not cholesterol efflux. Journal of Lipid Research, 2022, 63, 100168.	4.2	7
191	Pulmonary surfactant protein B carried by HDL predicts incident CVD in patients with type 1 diabetes. Journal of Lipid Research, 2022, 63, 100196.	4.2	7
192	Conservation of Apolipoprotein A-l's Central Domain Structural Elements upon Lipid Association on Different High-Density Lipoprotein Subclasses. Biochemistry, 2013, 52, 6766-6778.	2.5	5
193	THE RESPIRATORY BURST OF NEUTROPHILS: OXIDATIVE PATHWAYS FOR THE INITIATION OF TISSUE DAMAGE AT SITES OF INFLAMMATION. , 1999, , 31-57.		4
194	Does HDL (High-Density Lipoprotein) Play a Causal Role in Host Defenses Against Infection?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 5-6.	2.4	4
195	Perimenopausal transdermal estradiol replacement reduces serum HDL cholesterol efflux capacity but improves cardiovascular risk factors. Journal of Clinical Lipidology, 2021, 15, 151-161.e0.	1.5	4
196	Sources of Vascular Oxidative Stress. Developments in Cardiovascular Medicine, 2000, , 9-25.	0.1	3
197	A "new―thematic series: mass spectrometry-based proteomics of lipid biology. Journal of Lipid Research, 2009, 50, 777-780.	4.2	2
198	Role of amphipathic α-helical structural elements in removing cellular cholesterol and protecting against cardiovascular disease. Future Lipidology, 2007, 2, 185-196.	0.5	1

#	Article	IF	CITATIONS
199	When good cholesterol turns bad: The evolving saga of CETP inhibitors and clinical strategies to elevate high-density lipoprotein. Current Diabetes Reports, 2008, 8, 165-167.	4.2	1
200	Small HDL, diabetes, and proinflammatory effects in macrophages. FASEB Journal, 2019, 33, 238.3.	0.5	1
201	Respiratory Burst Oxidase of Fertilization Peroxidative Mechanisms in Sea Urchin Eggs and Human Phagocytes. , 2002, , 543-555.		0
202	Gas Chromatography-Mass Spectrometric Analysis of Free 3-Chlorotyrosine, 3-Bromotyrosine, Ortho-Tyrosine, and 3-Nitrotyrosine in Biological Fluids. , 2003, , 87-92.		0
203	Oxidation of Artery Wall Proteins by Myeloperoxidase: A Proteomics Approach. , 2006, , 787-811.		0
204	When good cholesterol turns bad: The evolving saga of CETP inhibitors and clinical strategies to elevate high-density lipoprotein. Current Atherosclerosis Reports, 2007, 9, 425-427.	4.8	0
205	Integrated Biomarker Discovery and Validation Implicates the Complement Pathway in Early Atherogenesis. Journal of the American College of Cardiology, 2020, 75, 1942-1944.	2.8	0
206	Pathways for Oxidative Tissue Injury by Myeloperoxidase. , 2000, , 102-106.		0
207	Molecular Pathology of Oxidative Damage Induced by the Myeloperoxidase System of Activated Phagocytes. , 1997, , 263-270.		0
208	The structure of apoAâ€II on HDL reveals novel insights into its regulation of lipoprotein composition and function. FASEB Journal, 2019, 33, .	0.5	0