
Alexander B Rabinovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11267161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Destructive coastal sea level oscillations generated by Typhoon Maysak in the Sea of Japan in September 2020. Scientific Reports, 2022, 12, 8463.	1.6	15
2	Combined hazard of typhoon-generated meteorological tsunamis and storm surges along the coast of Japan. Natural Hazards, 2021, 106, 1639-1672.	1.6	28
3	The meteorological tsunami of 1 November 2010 in the southern Strait of Georgia: a case study. Natural Hazards, 2021, 106, 1503-1544.	1.6	30
4	Special issue on the global perspective on meteotsunami science: editorial. Natural Hazards, 2021, 106, 1087-1104.	1.6	29
5	The Impact of the Chiapas Tsunami of 8 September 2017 on the Coast of Mexico. Part 1: Observations, Statistics, and Energy Partitioning. Pure and Applied Geophysics, 2021, 178, 4291-4323.	0.8	7
6	Twenty-Seven Years of Progress in the Science of Meteorological Tsunamis Following the 1992 Daytona Beach Event. Pure and Applied Geophysics, 2020, 177, 1193-1230.	0.8	82
7	Introduction to "Twenty Five Years of Modern Tsunami Science Following the 1992 Nicaragua and Flores Island Tsunamis, Volume II― Pure and Applied Geophysics, 2020, 177, 1183-1191.	0.8	2
8	The 2018 Alaska-Kodiak Tsunami off the West Coast of North America: A Rare Mid-plate Tsunamigenic Event. Pure and Applied Geophysics, 2020, 177, 1347-1378.	0.8	3
9	Introduction to "Twenty Five Years of Modern Tsunami Science Following the 1992 Nicaragua and Flores Island Tsunamis, Volume I― Pure and Applied Geophysics, 2019, 176, 2757-2769.	0.8	4
10	Five Great Tsunamis of the 20th Century as Recorded on the Coast of British Columbia. Pure and Applied Geophysics, 2019, 176, 2887-2924.	0.8	10
11	Introduction to â€~â€~Global Tsunami Science: Past and Future, Volume III''. Pageoph Topical Volumes, 20 1-7.	018 <u>:</u> 2	0
12	Odessa Tsunami of 27 June 2014: Observations and Numerical Modelling. Pageoph Topical Volumes, 2019, , 315-342.	0.2	0
13	Introduction to "Global Tsunami Science: Past and Future, Volume IIIâ€, Pure and Applied Geophysics, 2018, 175, 1231-1237.	0.8	2
14	Odessa Tsunami of 27 June 2014: Observations and Numerical Modelling. Pure and Applied Geophysics, 2018, 175, 1545-1572.	0.8	22
15	Introduction to "Global Tsunami Science: Past and Future, Volume II― Pure and Applied Geophysics, 2017, 174, 2883-2889.	0.8	8
16	The 2011 Tohoku Tsunami on the Coast of Mexico: A Case Study. Pure and Applied Geophysics, 2017, 174, 2961-2986.	0.8	20
17	Tides in Three Enclosed Basins: The Baltic, Black, and Caspian Seas. Frontiers in Marine Science, 2016, 3, .	1.2	64
18	Modern Approaches in Meteotsunami Research and Early Warning. Frontiers in Marine Science, 2016, 3,	1.2	67

#	Article	IF	CITATIONS
19	A Comparative Analysis of Coastal and Open-Ocean Records of the Great Chilean Tsunamis of 2010, 2014 and 2015 off the Coast of Mexico. Pageoph Topical Volumes, 2016, , 4139-4178.	0.2	3
20	Introduction to "Global Tsunami Science: Past and Future, Volume l― Pure and Applied Geophysics, 2016, 173, 3663-3669.	0.8	7
21	A Comparative Analysis of Coastal and Open-Ocean Records of the Great Chilean Tsunamis of 2010, 2014 and 2015 off the Coast of Mexico. Pure and Applied Geophysics, 2016, 173, 4139-4178.	0.8	18
22	Meteotsunamis in the Laurentian Great Lakes. Scientific Reports, 2016, 6, 37832.	1.6	43
23	Introduction to Global Tsunami Science: Past and Future, Volume I. Pageoph Topical Volumes, 2016, , 3663-3669.	0.2	1
24	Widespread tsunami-like waves of 23-27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing. Scientific Reports, 2015, 5, 11682.	1.6	90
25	Introduction to "Tsunami Science: Ten Years after the 2004 Indian Ocean Tsunami. Volume II.― Pure and Applied Geophysics, 2015, 172, 3265-3270.	0.8	7
26	On the Leading Negative Phase of Major 2010–2014 Tsunamis. Pure and Applied Geophysics, 2015, 172, 3493-3508.	0.8	9
27	Observations and Numerical Modeling of the 2012 Haida Gwaii Tsunami off the Coast of British Columbia. Pure and Applied Geophysics, 2015, 172, 699-718.	0.8	26
28	Introduction to "Tsunami Science: Ten Years After the 2004 Indian Ocean Tsunami. Volume l― Pure and Applied Geophysics, 2015, 172, 615-619.	0.8	15
29	Deep-Ocean Measurements of Tsunami Waves. Pure and Applied Geophysics, 2015, 172, 3281-3312.	0.8	90
30	Introduction to "Tsunamis in the Pacific Ocean: 2011–2012― Pure and Applied Geophysics, 2014, 171, 3175-3182.	0.8	6
31	Meteotsunami in the Great Lakes and on the Atlantic coast of the United States generated by the "derecho―of June 29–30, 2012. Natural Hazards, 2014, 74, 75-107.	1.6	48
32	Meteorological tsunamis on the US East Coast and in other regions of the World Ocean. Natural Hazards, 2014, 74, 1-9.	1.6	46
33	Meteorological tsunamis on the US East Coast and in other regions of the World Ocean. , 2014, , 1-9.		1
34	Introduction to "Historical and Recent Catastrophic Tsunamis in the World: Volume II. Tsunamis from 1755 to 2010― Pure and Applied Geophysics, 2013, 170, 1361-1367.	0.8	13
35	The 2010 Chilean Tsunami Off the West Coast of Canada and the Northwest Coast of the United States. Pure and Applied Geophysics, 2013, 170, 1529-1565.	0.8	47
36	The open ocean energy decay of three recent transâ€Pacific tsunamis. Geophysical Research Letters, 2013, 40, 3157-3162.	1.5	51

#	Article	IF	CITATIONS
37	Introduction to "Historical and Recent Catastrophic Tsunamis in the World: Volume I. The 2011 Tohoku Tsunami― Pure and Applied Geophysics, 2013, 170, 955-961.	0.8	16
38	The 2011 Tohoku tsunami generated major environmental changes in a distal Canadian fjord. Geophysical Research Letters, 2013, 40, 5937-5943.	1.5	3
39	Deep-sea observations and modeling of the 2004 Sumatra tsunami in Drake Passage. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	34
40	Energy Decay of the 2004 Sumatra Tsunami in the World Ocean. Pure and Applied Geophysics, 2011, 168, 1919-1950.	0.8	37
41	Intense diurnal surface currents in the Bay of La Paz, Mexico. Continental Shelf Research, 2010, 30, 608-619.	0.9	21
42	Seiches and Harbor Oscillations. , 2009, , 193-236.		216
43	Tsunamis on the Pacific Coast of Canada Recorded in 1994–2007. Pure and Applied Geophysics, 2009, 166, 177-210.	0.8	15
44	Meteorological tsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band. Physics and Chemistry of the Earth, 2009, 34, 891-893.	1.2	68
45	Tsunamis on the Pacific Coast of Canada Recorded in 1994–2007. , 2009, , 177-210.		2
46	Numerical Modeling and Observations of Tsunami Waves in Alberni Inlet and Barkley Sound, British Columbia. Pure and Applied Geophysics, 2008, 165, 2019-2044.	0.8	20
47	Locally generated tsunamis recorded on the coast of British Columbia. Atmosphere - Ocean, 2008, 46, 343-360.	0.6	14
48	Numerical Modeling and Observations of Tsunami Waves in Alberni Inlet and Barkley Sound, British Columbia. , 2008, , 2019-2044.		0
49	Sea Ice and Current Response to the Wind: A Vector Regressional Analysis Approach. Journal of Atmospheric and Oceanic Technology, 2007, 24, 1086-1101.	0.5	16
50	Double jeopardy: Concurrent arrival of the 2004 Sumatra tsunami and stormâ€generated waves on the Atlantic coast of the United States and Canada. Geophysical Research Letters, 2007, 34, .	1.5	39
51	The 26 December 2004 Sumatra Tsunami: Analysis of Tide Gauge Data from the World Ocean Part 1. Indian Ocean and South Africa. Pure and Applied Geophysics, 2007, 164, 261-308.	0.8	125
52	The 26 December 2004 Sumatra Tsunami: Analysis of Tide Gauge Data from the World Ocean Part 1. Indian Ocean and South Africa. , 2007, , 261-308.		6
53	The California tsunami of 15 June 2005 along the coast of North America. Atmosphere - Ocean, 2006, 44, 415-427.	0.6	13
54	The Sumatra tsunami of 26 December 2004 as observed in the North Pacific and North Atlantic oceans. Surveys in Geophysics, 2006, 27, 647-677.	2.1	93

#	Article	IF	CITATIONS
55	Estimation of Tsunami Risk for the Coasts of Peru and Northern Chile. Natural Hazards, 2005, 35, 185-209.	1.6	66
56	The Global Reach of the 26 December 2004 Sumatra Tsunami. Science, 2005, 309, 2045-2048.	6.0	388
57	The dual source region for the 2004 Sumatra tsunami. Geophysical Research Letters, 2005, 32, .	1.5	34
58	Sea-Ice Drift on the Northeastern Shelf of Sakhalin Island. Journal of Physical Oceanography, 2004, 34, 2470-2491.	0.7	22
59	Longwave Measurements for the Coast of British Columbia and Improvements to the Tsunami Warning Capability. Natural Hazards, 2004, 32, 313-343.	1.6	44
60	Barotropic and baroclinic tidal currents on the Mackenzie shelf break in the southeastern Beaufort Sea. Journal of Geophysical Research, 2004, 109, .	3.3	31
61	Constrained circulation at Endeavour ridge facilitates colonization by vent larvae. Nature, 2003, 424, 545-549.	13.7	86
62	Numerical Modeling of Tsunami Generation by Submarine and Subaerial Landslides. , 2003, , 69-88.		40
63	Drifter Observations of Anticyclonic Eddies near Bussol' Strait, the Kuril Islands. Journal of Oceanography, 2002, 58, 661-671.	0.7	25
64	Evidence of Diurnal Shelf Waves in Satellite-Tracked Drifter Trajectories off the Kuril Islands. Journal of Physical Oceanography, 2001, 31, 2650-2668.	0.7	32
65	Spectral characteristics of sea level variability along the west coast of North America during the 1982–83 and 1997–98 El Niño events. Progress in Oceanography, 2001, 49, 353-372.	1.5	21
66	On Numerical Simulation of the Landslide-Generated Tsunami of November 3, 1994 in Skagway Harbor, Alaska. Advances in Natural and Technological Hazards Research, 2001, , 243-282.	1.1	26
67	Near-surface circulation of the northeast Pacific Ocean derived from WOCE-SVP satellite-tracked drifters. Deep-Sea Research Part II: Topical Studies in Oceanography, 1999, 46, 2371-2403.	0.6	49
68	The landslide-generated tsunami of November 3, 1994 in Skagway Harbor, Alaska: A case study. Geophysical Research Letters, 1999, 26, 3009-3012.	1.5	38
69	On Sampling Strategies and Interpolation Schemes for Satellite-Tracked Drifters. Journal of Atmospheric and Oceanic Technology, 1999, 16, 893-904.	0.5	10
70	Generation of Meteorological Tsunamis (Large Amplitude Seiches) Near the Balearic and Kuril Islands. Natural Hazards, 1998, 18, 27-55.	1.6	98
71	Evidence for nonlinear interaction between internal waves of inertial and semidiurnal frequency. Geophysical Research Letters, 1998, 25, 1205-1208.	1.5	55
72	Satellite-tracked drifter measurement of inertial and semidiurnal currents in the northeast Pacific. Journal of Geophysical Research, 1998, 103, 1039-1052.	3.3	27

#	Article	IF	CITATIONS
73	Spectral analysis of tsunami waves: Separation of source and topography effects. Journal of Geophysical Research, 1997, 102, 12663-12676.	3.3	161
74	Observations of seamount-attached eddies in the North Pacific. Journal of Geophysical Research, 1997, 102, 12441-12456.	3.3	37
75	The February 23, 1887 tsunami recorded on the Ligurian Coast, western Mediterranean. Geophysical Research Letters, 1997, 24, 2211-2214.	1.5	31
76	Oceanic Odyssey of a satellite-tracked drifter: North Pacific variability delineated by a single drifter trajectory. Journal of Oceanography, 1997, 53, 81-87.	0.7	33
77	The landslide tsunami of November 3, 1994, Skagway Harbor, Alaska. Journal of Geophysical Research, 1996, 101, 6609-6615.	3.3	109