List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11265288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review: Friction stir welding tools. Science and Technology of Welding and Joining, 2011, 16, 325-342.	3.1	623
2	Neural Networks in Materials Science ISIJ International, 1999, 39, 966-979.	1.4	546
3	The bainite transformation in a silicon steel. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1979, 10, 895-907.	1.4	488
4	Bainite in steels. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1990, 21, 767-797.	1.4	481
5	Very strong low temperature bainite. Materials Science and Technology, 2002, 18, 279-284.	1.6	459
6	Acceleration of Low-temperature Bainite. ISIJ International, 2003, 43, 1821-1825.	1.4	416
7	Bainite in silicon steels: new composition–property approach Part 1. Metal Science, 1983, 17, 411-419.	0.7	415
8	Development of Hard Bainite. ISIJ International, 2003, 43, 1238-1243.	1.4	343
9	Review Type IV cracking in ferritic power plant steels. Materials Science and Technology, 2006, 22, 1387-1395.	1.6	292
10	Thermodynamic analysis of isothermal transformation diagrams. Metal Science, 1982, 16, 159-166.	0.7	270
11	Influence of silicon on cementite precipitation in steels. Materials Science and Technology, 2008, 24, 343-347.	1.6	259
12	Nanostructured bainite. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 3-18.	2.1	247
13	Friction stir welding of dissimilar alloys – a perspective. Science and Technology of Welding and Joining, 2010, 15, 266-270.	3.1	243
14	Bainite in silicon steels: new composition–property approach Part 2. Metal Science, 1983, 17, 420-425.	0.7	234
15	In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 3281-3289.	2.2	207
16	Advances in Physical Metallurgy and Processing of Steels. Design of Ferritic Creep-resistant Steels ISIJ International, 2001, 41, 626-640.	1.4	198
17	Mechanical stabilisation of austenite. Materials Science and Technology, 2006, 22, 641-644.	1.6	194
18	Austenite films in bainitic microstructures. Materials Science and Technology, 1995, 11, 874-882.	1.6	190

#	Article	IF	CITATIONS
19	Stress induced transformation to bainite in Fe–Cr–Mo–C pressure vessel steel. Materials Science and Technology, 1991, 7, 686-698.	1.6	186
20	Strength of mixtures of bainite and martensite. Materials Science and Technology, 1994, 10, 209-214.	1.6	182
21	Welding residual stresses in ferritic power plant steels. Materials Science and Technology, 2007, 23, 1009-1020.	1.6	176
22	TRIP-Assisted Steels?. ISIJ International, 2002, 42, 1059-1060.	1.4	175
23	Model for transition from upper to lower bainite. Materials Science and Technology, 1990, 6, 592-603.	1.6	162
24	Bainite transformation kinetics Part 1 Modified model. Materials Science and Technology, 1992, 8, 985-993.	1.6	154
25	Uncertainties in dilatometric determination of martensite start temperature. Materials Science and Technology, 2007, 23, 556-560.	1.6	143
26	Stability of retained austenite in TRIP-assisted steels. Materials Science and Technology, 2004, 20, 319-322.	1.6	135
27	52nd Hatfield Memorial LectureLarge chunks of very strong steel. Materials Science and Technology, 2005, 21, 1293-1302.	1.6	123
28	Critical assessment: Friction stir welding of steels. Science and Technology of Welding and Joining, 2009, 14, 193-196.	3.1	121
29	Medium-Alloy Manganese-Rich Transformation-Induced Plasticity Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 286-293.	2.2	120
30	Driving force for martensitic transformation in steels. Metal Science, 1981, 15, 175-177.	0.7	118
31	Mechanical stabilisation of bainite. Materials Science and Technology, 1995, 11, 1116-1128.	1.6	110
32	The first bulk nanostructured metal. Science and Technology of Advanced Materials, 2013, 14, 014202.	6.1	108
33	A Model for the Microstructure of Some Advanced Bainitic Steels. Materials Transactions, JIM, 1991, 32, 689-696.	0.9	107
34	High resolution observations of displacements caused by bainitic transformation. Materials Science and Technology, 1996, 12, 121-125.	1.6	99
35	Performance of neural networks in materials science. Materials Science and Technology, 2009, 25, 504-510.	1.6	99
36	<i>î´</i> TRIP steel. Materials Science and Technology, 2007, 23, 819-827.	1.6	97

#	Article	IF	CITATIONS
37	Transformation induced plasticity assisted steels: Stress or strain affected martensitic transformation?. Materials Science and Technology, 2007, 23, 1101-1104.	1.6	93
38	Thermodynamic extrapolation and martensite-start temperature of substitutionally alloyed steels. Metal Science, 1981, 15, 178-180.	0.7	91
39	Analysis of deformation induced martensitic transformation in stainless steels. Materials Science and Technology, 2011, 27, 366-370.	1.6	90
40	Modelling precipitation sequences in power plant steels Part 1 – Kinetic theory. Materials Science and Technology, 1997, 13, 631-639.	1.6	88
41	Cementite. International Materials Reviews, 2020, 65, 1-27.	19.3	84
42	Designing low carbon, low temperature bainite. Materials Science and Technology, 2008, 24, 335-342.	1.6	83
43	Thermal stability of retained austenite in bainitic steel: an <i>in situ</i> study. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 3141-3156.	2.1	81
44	Interphase precipitation in Ti–Nb and Ti–Nb–Mo bearing steel. Materials Science and Technology, 2013, 29, 309-313.	1.6	81
45	The effect of niobium on the hardenability of microalloyed austenite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995, 26, 21-30.	2.2	80
46	Impact toughness of C–Mn steel arc welds – Bayesian neural network analysis. Materials Science and Technology, 1995, 11, 1046-1051.	1.6	80
47	Bayesian Neural Network Analysis of Fatigue Crack Growth Rate in Nickel Base Superalloys ISIJ International, 1996, 36, 1373-1382.	1.4	80
48	Finite element simulation of laser spot welding. Science and Technology of Welding and Joining, 2003, 8, 377-384.	3.1	75
49	Transition from bainite to acicular ferrite in reheated Fe–Cr–C weld deposits. Materials Science and Technology, 1990, 6, 1005-1020.	1.6	71
50	Modeling of fundamental phenomena in welds. Modelling and Simulation in Materials Science and Engineering, 1995, 3, 265-288.	2.0	71
51	Diffusion of carbon in austenite. Metal Science, 1981, 15, 477-480.	0.7	70
52	TRIP-assisted steels: cracking of high-carbon martensite. Materials Science and Technology, 2006, 22, 645-649.	1.6	70
53	Neural Networks and Information in Materials Science. Statistical Analysis and Data Mining, 2009, 1, 296-305.	2.8	68
54	Neural network model of creep strength of austenitic stainless steels. Materials Science and Technology, 2002, 18, 655-663.	1.6	65

#	Article	IF	CITATIONS
55	White-Etching Matter in Bearing Steel. Part II: Distinguishing Cause and Effect in Bearing Steel Failure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4916-4931.	2.2	65
56	Carbide precipitation in 12Cr1MoV power plant steel. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1992, 23, 1171-1179.	1.4	64
57	Titanium-rich mineral phases and the nucleation of bainite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1994, 25, 1603-1611.	2.2	64
58	Critical Assessment 13: Elimination of white etching matter in bearing steels. Materials Science and Technology, 2015, 31, 1011-1015.	1.6	64
59	The interpretation of dilatometric data for transformations in steels. Journal of Materials Science Letters, 1989, 8, 477-478.	0.5	63
60	Diffusion of carbon in substitutionally alloyed austenite. Journal of Materials Science Letters, 1995, 14, 314-316.	0.5	61
61	Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 3 – Increased strength resulting from carbon additions. Science and Technology of Welding and Joining, 2006, 11, 19-24.	3.1	58
62	Prediction of cooling rate and microstructure in laser spot welds. Science and Technology of Welding and Joining, 2003, 8, 391-399.	3.1	57
63	Analysis of mechanical properties and microstructure of high-silicon dual-phase steel. Metal Science, 1980, 14, 41-49.	0.7	56
64	Diffusion-controlled growth of ferrite plates in plain-carbon steels. Materials Science and Technology, 1985, 1, 497-504.	1.6	56
65	Modelling and characterisation of Mo2C precipitation and cementite dissolution during tempering of Fe–C–Mo martensitic steel. Materials Science and Technology, 2003, 19, 723-731.	1.6	54
66	Crystallography of WidmanstÃ ¤ ten austenite in duplex stainless steel weld metal. Science and Technology of Welding and Joining, 2009, 14, 4-10.	3.1	54
67	competitive formation of inter- and intragranularly nucleated ferrite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 2005-2013.	2.2	53
68	Influence of Silicon in Low Density Fe-C-Mn-Al Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1731-1735.	2.2	53
69	Orientation relationships between adjacent plates of acicular ferrite in steel weld deposits. Materials Science and Technology, 1989, 5, 93-97.	1.6	52
70	Nucleation of Widmanstäen ferrite. Materials Science and Technology, 1990, 6, 781-784.	1.6	52
71	Kinetics of reconstructive austenite to ferrite transformation in low alloy steels. Materials Science and Technology, 1992, 8, 421-436.	1.6	52
72	Modelling precipitation sequences in powerplant steels Part 2 – Application of kinetic theory. Materials Science and Technology, 1997, 13, 640-644.	1.6	52

#	Article	IF	CITATIONS
73	Ferritic power plant steels: remanent life assessment and approach to equilibrium. International Materials Reviews, 1998, 43, 45-69.	19.3	52
74	Design of a creep resistant nickel base superalloy for power plant applications: Part 1 - Mechanical properties modelling. Materials Science and Technology, 2003, 19, 283-290.	1.6	52
75	The Effects of Filler Metal Transformation Temperature on Residual Stresses in a High Strength Steel Weld. Journal of Pressure Vessel Technology, Transactions of the ASME, 2009, 131, .	0.6	52
76	Mechanical stabilisation of eutectoid steel. Materials Science and Technology, 2007, 23, 610-612.	1.6	51
77	Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 2 – Impact toughness gain resulting from manganese reductions. Science and Technology of Welding and Joining, 2006, 11, 9-18.	3.1	50
78	The distribution of substitutional alloying elements during the bainite transformation. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1990, 21, 837-844.	1.4	49
79	Quantitative evidence for mechanical stabilization of bainite. Materials Science and Technology, 1996, 12, 610-612.	1.6	49
80	Precipitation sequence in niobium-alloyed ferritic stainless steel. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 273-284.	2.0	49
81	Thermodynamics of acicular ferrite nucleation. Materials Science and Technology, 1994, 10, 353-358.	1.6	48
82	Bayesian neural network model for austenite formation in steels. Materials Science and Technology, 1996, 12, 453-463.	1.6	48
83	Modelling Simultaneous Alloy Carbide Sequence in Power Plant Steels ISIJ International, 2002, 42, 760-769.	1.4	47
84	Role of fracture toughness in impact-abrasion wear. Wear, 2019, 428-429, 430-437.	3.1	47
85	The evolution of solutions: A thermodynamic analysis of mechanical alloying. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 2189-2194.	2.2	46
86	Changes in toughness at low oxygen concentrations in steel weld metals. Science and Technology of Welding and Joining, 2006, 11, 509-516.	3.1	46
87	Fatigue of extremely fine bainite. Materials Science and Technology, 2011, 27, 119-123.	1.6	46
88	Design of weld fillers for mitigation of residual stresses in ferritic and austenitic steel welds. Science and Technology of Welding and Joining, 2011, 16, 279-284.	3.1	46
89	Theoretical analysis of changes in cementite composition during tempering of bainite. Materials Science and Technology, 1989, 5, 131-137.	1.6	45
90	Grain control in mechanically alloyed oxide dispersion strengthened MA 957 steel. Materials Science and Technology, 1993, 9, 890-898.	1.6	45

#	Article	IF	CITATIONS
91	Acicular ferrite transformation in alloy-steel weld metals. Journal of Materials Science, 1991, 26, 839-845.	3.7	44
92	Changes in chemical composition of carbides in 2·25Cr–1Mo power plant steel. Materials Science and Technology, 1994, 10, 193-204.	1.6	44
93	Modelling and characterisation of V4C3precipitation and cementite dissolution during tempering of Fe-C-V martensitic steel. Materials Science and Technology, 2003, 19, 1335-1343.	1.6	44
94	Stainless steel weld metal designed to mitigate residual stresses. Science and Technology of Welding and Joining, 2009, 14, 559-565.	3.1	44
95	Non-equilibrium solidification and ferrite in <i>\hat{I} </i> TRIP steel. Materials Science and Technology, 2010, 26, 817-823.	1.6	44
96	Effect of interpass temperature on residual stresses in multipass welds produced using low transformation temperature filler alloy. Science and Technology of Welding and Joining, 2014, 19, 44-51.	3.1	44
97	Microstructure of lower bainite formed at large undercoolings below bainite start temperature. Materials Science and Technology, 1996, 12, 233-236.	1.6	43
98	Mathematical models in materials science. Materials Science and Technology, 2008, 24, 128-136.	1.6	42
99	Stabilisation of ferrite in hot rolled Î'-TRIP steel. Materials Science and Technology, 2011, 27, 525-529.	1.6	42
100	Coupled diffusional/displacive transformations: Part II. Solute trapping. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1990, 21, 805-809.	1.4	41
101	Sensitisation and Evolution of Chromium-depleted Zones in Fe-Cr-Ni-C Systems. ISIJ International, 2003, 43, 1814-1820.	1.4	41
102	Topology of grain deformation. Materials Science and Technology, 1998, 14, 832-834.	1.6	40
103	Divorced pearlite in steels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2767-2778.	2.1	40
104	Friction stir welding of mild steel: Tool durability and steel microstructure. Materials Science and Technology, 2014, 30, 1050-1056.	1.6	40
105	Solidification sequences in stainless steel dissimilar alloy welds. Materials Science and Technology, 1991, 7, 50-61.	1.6	39
106	Metallographic observations of bainite transformation mechanism. Materials Science and Technology, 1995, 11, 105-108.	1.6	39
107	Characterisation of severely deformed austenitic stainless steel wire. Materials Science and Technology, 2005, 21, 1323-1328.	1.6	39
108	Heat transfer coefficients during quenching of steels. Heat and Mass Transfer, 2011, 47, 315-321.	2.1	39

#	Article	IF	CITATIONS
109	Lower acicular ferrite. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1989, 20, 1811-1818.	1.4	38
110	Extraordinary ductility in Al-bearing δ-TRIP steel. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 234-243.	2.1	38
111	Hydrogen diffusion and the percolation of austenite in nanostructured bainitic steel. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140108.	2.1	38
112	Diffusional Transformations: A Theory for the Formation of Superledges. Physica Status Solidi A, 1982, 69, 745-750.	1.7	37
113	Electron backscattering diffraction study of coalesced bainite in high strength steel weld metals. Materials Science and Technology, 2008, 24, 1183-1188.	1.6	37
114	Optimizing the Morphology and Stability of Retained Austenite in a δ-TRIP Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3512-3518.	2.2	37
115	Application of first-order quasichemical theory to transformations in steels. Metal Science, 1982, 16, 167-170.	0.7	36
116	Directional recrystallisation in Inconel MA 6000 nickel base oxide dispersion strengthened superalloy. Materials Science and Technology, 1990, 6, 1236-1246.	1.6	36
117	Bearing steel microstructures after aircraft gas turbine engine service. Materials Science and Technology, 2014, 30, 1911-1918.	1.6	36
118	The bainite transformation in chemically heterogeneous 300M high-strength steel. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1990, 21, 859-875.	1.4	35
119	Coalesced bainite by isothermal transformation of reheated weld metal. Science and Technology of Welding and Joining, 2008, 13, 593-597.	3.1	35
120	Further evidence of tetragonality in bainitic ferrite. Materials Science and Technology, 2015, 31, 254-256.	1.6	35
121	Design of a creep resistant nickel base superalloy for power plant applications: Part 3 - Experimental results. Materials Science and Technology, 2003, 19, 296-302.	1.6	34
122	Quantitative metallography of deformed grains. Materials Science and Technology, 2007, 23, 757-766.	1.6	34
123	Stretch-flangeability of strong multiphase steels. Materials Science and Technology, 2007, 23, 606-609.	1.6	33
124	Spot weldability of TRIP assisted steels with high carbon and aluminium contents. Science and Technology of Welding and Joining, 2012, 17, 92-98.	3.1	33
125	High entropy alloys. Materials Science and Technology, 2015, 31, 1139-1141.	1.6	33
126	Bulk nanocrystalline steel. Ironmaking and Steelmaking, 2005, 32, 405-410.	2.1	32

#	Article	IF	CITATIONS
127	Bainite orientation in plastically deformed austenite. International Journal of Materials Research, 2009, 100, 40-45.	0.3	32
128	Tool durability maps for friction stir welding of an aluminium alloy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 3552-3570.	2.1	32
129	A model for the strength of the As-deposited regions of steel weld metals. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1988, 19, 1597-1602.	1.4	31
130	Crystallographic texture in mechanically alloyed oxide dispersion-strengthened MA956 and MA957 steels. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 773-779.	1.4	31
131	Estimation of the .GAMMA. and .GAMMA.' Lattice Parameters in Nickel-base Superalloys Using Neural Network Analysis ISIJ International, 1998, 38, 495-502.	1.4	30
132	Strength of Ferritic Steels: Neural Networks and Genetic Programming. Materials and Manufacturing Processes, 2008, 24, 10-15.	4.7	30
133	Mixed diffusion-controlled growth of pearlite in binary steel. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 508-521.	2.1	30
134	Cementite precipitation during tempering of martensite under the influence of an externally applied stress. Journal of Materials Science, 1994, 29, 6079-6084.	3.7	29
135	Tensile properties of mechanically alloyed oxide dispersion strengthened iron alloys Part 1 - Neural networkmodels. Materials Science and Technology, 1998, 14, 793-809.	1.6	29
136	Estimation of Type IV Cracking Tendency in Power Plant Steels. ISIJ International, 2004, 44, 1966-1968.	1.4	29
137	Understanding the complexities of bake hardening. Materials Science and Technology, 2008, 24, 107-111.	1.6	29
138	Air cooled bainitic steels for strong, seamless pipes Part 1 – alloy design, kinetics and microstructure. Materials Science and Technology, 2009, 25, 1501-1507.	1.6	29
139	Macrosegregation and Microstructural Evolution in a Pressure-Vessel Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2983-2997.	2.2	29
140	Anomalies in carbon concentration determinations from nanostructured bainite. Materials Science and Technology, 2015, 31, 758-763.	1.6	29
141	Dry rolling/sliding wear of nanostructured pearlite. Materials Science and Technology, 2015, 31, 1735-1744.	1.6	29
142	Growth rate data on bainite in alloy steels. Materials Science and Technology, 1989, 5, 398-402.	1.6	28
143	Prediction of martensite start temperature of power plant steels. Materials Science and Technology, 1996, 12, 40-44.	1.6	28
144	Design of a creep resistant nickel base superalloy for power plant applications: Part 2 - Phase diagram and segregation simulation. Materials Science and Technology, 2003, 19, 291-295.	1.6	28

#	Article	IF	CITATIONS
145	Surface Relief Due to Bainite Transformation at 473ÂK (200°C). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3344-3348.	2.2	28
146	Tempering of Low-Temperature Bainite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3410-3418.	2.2	28
147	In situ synchrotron X-ray study of bainite transformation kinetics in a low-carbon Si-containing steel. Materials Science and Technology, 2017, 33, 2147-2156.	1.6	28
148	The austenite grain structure of low-alloy steel weld deposits. Journal of Materials Science, 1986, 21, 3947-3951.	3.7	27
149	Optimization of Neural Network for Charpy Toughness of Steel Welds. Materials and Manufacturing Processes, 2008, 24, 16-21.	4.7	27
150	Effects of weld preheat temperature and heat input on type IV failure. Science and Technology of Welding and Joining, 2009, 14, 436-442.	3.1	27
151	Austenite–ferrite transformation in enhanced niobium, low carbon steel. Materials Science and Technology, 2015, 31, 1066-1076.	1.6	27
152	Designing steel to resist hydrogen embrittlement: Part 1 – trapping capacity. Materials Science and Technology, 2018, 34, 1737-1746.	1.6	27
153	Precipitation sequences during carburisation of Cr–Mo steel. Materials Science and Technology, 1992, 8, 875-882.	1.6	26
154	Modeling M6C precipitation in niobium-alloyed ferritic stainless steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 3339-3347.	2.2	26
155	Relative effects of Mo and B on ferrite and bainite kinetics in strong steels. International Journal of Materials Research, 2009, 100, 1513-1520.	0.3	26
156	Pearlite growth rate in Fe–C and Fe–Mn–C steels. Materials Science and Technology, 2015, 31, 487-493.	1.6	26
157	Directional recrystallization in mechanically alloyed oxide dispersion-strengthened metals by annealing in a moving temperature gradient. Journal of Materials Science, 1995, 30, 1439-1444.	3.7	25
158	Carbide precipitation in some secondary hardened steels. Journal of Materials Science, 1997, 32, 4815-4820.	3.7	25
159	Calculation of crystallographic texture due to displacive transformations. International Journal of Materials Research, 2008, 99, 342-346.	0.3	25
160	Induction welding and heat treatment of steel pipes: Evolution of crystallographic texture detrimental to toughness. Science and Technology of Welding and Joining, 2010, 15, 137-141.	3.1	25
161	White-Etching Matter in Bearing Steel. Part I: Controlled Cracking of 52100 Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4907-4915.	2.2	25
162	Effects of dilution and baseplate strength on stress distributions in multipass welds deposited using low transformation temperature filler alloys. Science and Technology of Welding and Joining, 2014, 19, 461-467.	3.1	25

#	Article	IF	CITATIONS
163	Diffusion-controlled growth of pearlite in ternary steels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 2948-2961.	2.1	24
164	Comparison of Artificial Neural Networks with Gaussian Processes to Model the Yield Strength of Nickel-base Superalloys ISIJ International, 1999, 39, 1020-1026.	1.4	23
165	Surface residual stresses in multipass welds produced using low transformation temperature filler alloys. Science and Technology of Welding and Joining, 2014, 19, 623-630.	3.1	23
166	Microstructures in hot wire laser beam welding of HY 80 steel. Materials Science and Technology, 1994, 10, 56-59.	1.6	22
167	Changes in chemical composition of carbides in 2·25Cr–1Mo power plant steel. Materials Science and Technology, 1994, 10, 205-208.	1.6	22
168	Stress-affected transformation to lower bainite. Journal of Materials Science, 1996, 31, 2145-2148.	3.7	22
169	Very Short and Very Long Heat Treatments in the Processing of Steel. Materials and Manufacturing Processes, 2010, 25, 1-6.	4.7	22
170	Modelling coarsening behaviour of TiC precipitates in high strength, low alloy steels. Materials Science and Technology, 2013, 29, 1074-1079.	1.6	22
171	Austenite in Transformation-Induced Plasticity Steel Subjected to Multiple Isothermal Heat Treatments. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4201-4209.	2.2	22
172	Problems in the Welding of Automotive Alloys. Science and Technology of Welding and Joining, 2015, 20, 451-453.	3.1	22
173	An aspect of the nucleation of burst martensite. Journal of Materials Science, 1982, 17, 383-386.	3.7	21
174	Nonuniform recrystallization in a mechanically alloyed nickel-base superalloy. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 1049-1055.	1.4	21
175	Spot weldability of <i>Ĩ´</i> -TRIP steel containing 0·4 wt-%C. Science and Technology of Welding and Joining, 2010, 15, 619-624.	3.1	21
176	Oxidation of silicon containing steel. Ironmaking and Steelmaking, 2012, 39, 599-604.	2.1	21
177	Plastic accommodation of martensite in disordered and ordered iron–platinum alloys. Materials Science and Technology, 1995, 11, 109-111.	1.6	20
178	Hot strength of creep resistant ferritic steels and relationship to creep rupture data. Materials Science and Technology, 2007, 23, 1127-1131.	1.6	20
179	Mechanism of misorientation development within coalesced martensite. Materials Science and Technology, 2012, 28, 918-923.	1.6	20
180	Stress induced transformation to bainite in Fe–Cr–Mo–C pressure vessel steel. Materials Science and Technology, 1991, 7, 686-698.	1.6	20

#	Article	IF	CITATIONS
181	Considerations of solute-drag in relation to transformations in steels. Journal of Materials Science, 1983, 18, 1473-1481.	3.7	19
182	Model for solidification cracking in low alloy steel weld metals. Science and Technology of Welding and Joining, 1996, 1, 43-50.	3.1	19
183	Problems in the Calculation of Transformation Texture in Steels. ISIJ International, 2010, 50, 1517-1522.	1.4	19
184	Displacive Phase Transformation and Surface Effects Associated with Confocal Laser Scanning Microscopy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4520-4524.	2.2	19
185	Is low phosphorus content in steel a product requirement?. Ironmaking and Steelmaking, 2015, 42, 259-267.	2.1	19
186	Crystallographic texture and the austenite grain structure of low-alloy steel weld deposits. Journal of Materials Science Letters, 1991, 10, 142-144.	0.5	18
187	Transformation Temperatures and Welding Residual Stresses in Ferritic Steels. , 2007, , 949.		18
188	Transformation texture of allotriomorphic ferrite in steel. Materials Science and Technology, 2009, 25, 892-895.	1.6	18
189	An integrated hot rolling and microstructure model for dual-phase steels. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 045005.	2.0	18
190	Residual stress control of multipass welds using low transformation temperature fillers. Materials Science and Technology, 2018, 34, 519-528.	1.6	18
191	Thermodynamics of steels: carbon–carbon interaction energy. Metal Science, 1980, 14, 230-232.	0.7	17
192	Modelling of steel welds. Materials Science and Technology, 1992, 8, 123-133.	1.6	17
193	Bessemer Memorial Lecture: The dimensions of steel. Ironmaking and Steelmaking, 2007, 34, 194-199.	2.1	17
194	Ausforming of medium carbon steel. Materials Science and Technology, 2015, 31, 436-442.	1.6	17
195	Tensile properties of mechanically alloyed oxide dispersion strengthened iron alloys Part 2 – Physical interpretation of yield strength. Materials Science and Technology, 1998, 14, 1221-1226.	1.6	16
196	Air cooled bainitic steels for strong, seamless pipes Part 2 – properties and microstructure of rolled material. Materials Science and Technology, 2009, 25, 1508-1512.	1.6	16
197	Dual orientation and variant selection during diffusional transformation of austenite to allotriomorphic ferrite. Journal of Materials Science, 2010, 45, 4126-4132.	3.7	16
198	Retention of δ-ferrite in aluminium-alloyed TRIP-assisted steels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2904-2914.	2.1	16

#	Article	IF	CITATIONS
199	The microstructure of submerged arc-weld deposits for high-strength steels. Journal of Materials Science, 1989, 24, 3180-3188.	3.7	15
200	Dynamic recrystallisation in hot deformed oxide dispersion strengthened MA956 and MA957 steels. Materials Science and Technology, 1995, 11, 1129-1138.	1.6	15
201	Strength and toughness of clean nanostructured bainite. Materials Science and Technology, 2017, 33, 1171-1179.	1.6	15
202	Characteristics of high-power diode–laser welds for industrial assembly. Journal of Laser Applications, 2003, 15, 68-76.	1.7	14
203	Size distribution of oxides and toughness of steel weld metals. Science and Technology of Welding and Joining, 2006, 11, 580-582.	3.1	14
204	Elucidating white-etching matter through high-strain rate tensile testing. Materials Science and Technology, 2017, 33, 307-310.	1.6	14
205	Carbon content of retained austenite in quenched steels. Metal Science, 1983, 17, 151-152.	0.7	13
206	Microstructure of high strength steel refined with intragranularly nucleated Widmanstäten ferrite. Materials Science and Technology, 1991, 7, 895-903.	1.6	13
207	Topology of the Deformation of a Non-uniform Grain Structure. ISIJ International, 2009, 49, 115-118.	1.4	13
208	Thermodynamic estimation of liquidus, solidus Ae ₃ temperatures, and phase compositions for low alloy multicomponent steels. Materials Science and Technology, 1989, 5, 977-984.	1.6	13
209	Domains of Steels with Identical Properties. Materials and Manufacturing Processes, 2008, 24, 53-58.	4.7	12
210	Temperature cycling and the rate of the bainite transformation. Materials Science and Technology, 2010, 26, 453-456.	1.6	12
211	Spheroidisation of hypereutectoid state of nanostructured bainitic steel. Materials Science and Technology, 2014, 30, 1282-1286.	1.6	12
212	Toughness anisotropy in X70 and X80 linepipe steels. Materials Science and Technology, 2014, 30, 439-446.	1.6	12
213	Solution to the Bagaryatskii and Isaichev ferrite–cementite orientation relationship problem. Materials Science and Technology, 2018, 34, 1666-1668.	1.6	12
214	Accumulation of stress in constrained assemblies: Novel Satoh test configuration. Science and Technology of Welding and Joining, 2010, 15, 497-499.	3.1	11
215	The influence of alloying elements on the formation of allotriomorphic ferrite in low-alloy steel weld deposits. Journal of Materials Science Letters, 1985, 4, 305-308.	0.5	10
216	Mechanism and Kinetics of Solid-State Transformation in High-Temperature Processed Linepipe Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5468-5477.	2.2	10

#	Article	IF	CITATIONS
217	The Consequences of Macroscopic Segregation on the Transformation Behavior of a Pressure-Vessel Steel. Journal of Pressure Vessel Technology, Transactions of the ASME, 2014, 136, .	0.6	10
218	Effect of manganese sulphide particle shape on the pinning of grain boundary. Materials Science and Technology, 2017, 33, 1013-1018.	1.6	10
219	Contribution of Microalloying to the Strength of Hot-Rolled Steels. Materials and Manufacturing Processes, 2009, 24, 138-144.	4.7	9
220	Atomic Mechanism of the Bainite Transformation. HTM - Journal of Heat Treatment and Materials, 2017, 72, 340-345.	0.2	9
221	Changes in chemical composition of carbides in 2·25Cr–1Mo power plant steel. Materials Science and Technology, 1994, 10, 193-204.	1.6	9
222	Thermodynamic estimation of liquidus, solidus Ae ₃ temperatures, and phase compositions for low alloy multicomponent steels. Materials Science and Technology, 1989, 5, 977-984.	1.6	8
223	Designing steel to resist hydrogen embrittlement Part 2 – precipitate characterisation. Materials Science and Technology, 2018, 34, 1747-1758.	1.6	8
224	Carbon Enrichment in Residual Austenite during Martensitic. , 0, , 179-185.		8
225	Quasichemical model for interstitial solutions. Materials Science and Technology, 1998, 14, 273-276.	1.6	7
226	Investigations Into the Microstructure–Toughness Relation in High Frequency Induction Welded Pipes. , 2010, , .		7
227	The Electrical Processing of Materials. Materials Science and Technology, 2015, 31, 1521-1522.	1.6	7
228	Recent developments in bearing steels. Materials Science and Technology, 2016, 32, 1059-1061.	1.6	7
229	Modelling of size distribution of blocky retained austenite in Si-containing bainitic steels. Materials Science and Technology, 2018, 34, 54-62.	1.6	7
230	Modelling precipitation sequences in power plant steels Part 1 – Kinetic theory. Materials Science and Technology, 1997, 13, 631-639.	1.6	7
231	Critical assessment 41: The strength of undeformed pearlite. Materials Science and Technology, 2022, 38, 1291-1299.	1.6	7
232	An analysis of compositional data on plates in an Ag-44.9Cd at.% alloy. Modelling and Simulation in Materials Science and Engineering, 1999, 7, 1-13.	2.0	6
233	Theory for growth of needle-shaped particles in multicomponent systems. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 1075-1081.	2.2	6
234	Roughness of bainite. Materials Science and Technology, 2006, 22, 650-652.	1.6	6

#	Article	IF	CITATIONS
235	Nanostructured bainitic steel obtained by powder metallurgy approach: structure, transformation kinetics and mechanical properties. Powder Metallurgy, 2012, 55, 256-259.	1.7	6
236	Estimation of fracture toughness of tempered nanostructured bainite. Materials Science and Technology, 2012, 28, 685-689.	1.6	6
237	Adventures in the physical metallurgy of steels. Materials Science and Technology, 2014, 30, 995-997.	1.6	6
238	Avrami theory for transformations from non-uniform austenite grain structures. Materials Science and Technology, 2003, 19, 1330-1334.	1.6	5
239	Comments on â€~Determination of <i>M</i> _s temperature: methods, meaning and influence of â€~slow start' phenomenon' by T. Sourmail and V. Smanio. Materials Science and Technology, 2013, 29 889-889.	,1.6	4
240	Model for multiple stress affected martensitic transformations, microstructural entropy and consequences on scatter in properties. Materials Science and Technology, 2014, 30, 160-165.	1.6	4
241	Characteristics of high-power diode-laser welds for industrial assembly. , 2001, , .		3
242	Elongation of Irradiated Steels. Materials and Manufacturing Processes, 2009, 24, 130-137.	4.7	3
243	Shear band structure in ballistically tested bainitic steels. Materials Science and Technology, 2014, 30, 812-817.	1.6	3
244	Nitrogen in submerged-arc weld deposits. Journal of Materials Science Letters, 1988, 7, 610-612.	0.5	2
245	The reverse transformations in a high-strength high-hardenability Fe-C-Si-Mn-Mo steel. Journal of Materials Science, 1993, 28, 3137-3144.	3.7	2
246	Second set of comments on â€`Determination of <i>M</i> _s temperature: methods, meaning and influence of â€`slow start' phenomenon' by T. Sourmail and V. Smanio. Materials Science and Technology, 2014, 30, 510-510.	1.6	2
247	Melt-spinning and semi-solid processing of bainitic steel. Materials Science and Technology, 2017, 33, 870-878.	1.6	2
248	Possibility of Low-Carbon, Low-Temperature Bainite. , 0, , 695-702.		2
249	The Front Lines of Modeling of Welding Processes Frontiers in the Modelling of Steel Weld Deposits. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2007, 76, 102-108.	0.1	2
250	Coupled diffusional/displacive transformations: addition of substitutional alloying elements. Journal Physics D: Applied Physics, 2001, 34, 2573-2580.	2.8	1
251	Microstructure evolution in irons and steels: a tribute to David V. Edmonds. International Heat Treatment and Surface Engineering, 2010, 4, 62-69.	0.2	1
252	Niobium in Microalloyed Rail Steels. , 2016, , 33-39.		1

#	Article	IF	CITATIONS
253	Stirring Solid Metals to Form Sound Welds. , 2021, , 21-34.		1
254	Microstructural development in an HSLA80 laser beam weldment. , 1994, , .		1
255	Length scales and alloys of iron. IOP Conference Series: Materials Science and Engineering, 0, 580, 012002.	0.6	1
256	1000 gems: Celebration of <i>STWJ</i> . Science and Technology of Welding and Joining, 2011, 16, 285-287.	3.1	0
257	Niobium in Microalloyed Rail Steels. , 0, , 33-39.		Ο
258	Advanced metallic alloys for the fossil fuel industries. Materials Science and Technology, 2016, 32, 662-663.	1.6	0
259	First Bulk Nanostructured Metal. , 2021, , 85-94.		Ο
260	Mechanical Twinning in Aircraft Engine Bearing Steel. , 2014, , 1-13.		0