Rosetta Pedotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11264123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	COVID-19 in ocrelizumab-treated people with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 49, 102725.	2.0	59
2	Understanding the impacts of COVID-19 pandemic in people with multiple sclerosis treated with ocrelizumab. Multiple Sclerosis and Related Disorders, 2021, 55, 103203.	2.0	2
3	CD8+ T cells specific for cryptic apoptosis-associated epitopes exacerbate experimental autoimmune encephalomyelitis. Cell Death and Disease, 2021, 12, 1026.	6.3	6
4	COVID-19 in persons with multiple sclerosis treated with ocrelizumab – A pharmacovigilance case series. Multiple Sclerosis and Related Disorders, 2020, 42, 102192.	2.0	51
5	DNA threads released by activated CD4 ⁺ T lymphocytes provide autocrine costimulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8985-8994.	7.1	33
6	Treatment with anti-FcÎμRIα antibody exacerbates EAE and T-cell immunity against myelin. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e342.	6.0	7
7	Prolactin: Friend or Foe in Central Nervous System Autoimmune Inflammation?. International Journal of Molecular Sciences, 2016, 17, 2026.	4.1	25
8	Tackling amyloidogenesis in Alzheimer's disease with A2V variants of Amyloid-β. Scientific Reports, 2016, 6, 20949.	3.3	26
9	Critical role for prokineticin 2 in CNS autoimmunity. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e95.	6.0	29
10	Prolactin: A versatile regulator of inflammation and autoimmune pathology. Autoimmunity Reviews, 2015, 14, 223-230.	5.8	68
11	Development of Central Nervous System Autoimmunity Is Impaired in the Absence of Wiskott-Aldrich Syndrome Protein. PLoS ONE, 2014, 9, e86942.	2.5	2
12	Gene expression analysis of histamine receptors in peripheral blood mononuclear cells from individuals with clinically-isolated syndrome and different stages of multiple sclerosis. Journal of Neuroimmunology, 2014, 277, 186-188.	2.3	7
13	Exacerbation of experimental autoimmune encephalomyelitis by passive transfer of IgG antibodies from a multiple sclerosis patient responsive to immunoadsorption. Journal of Neuroimmunology, 2013, 262, 19-26.	2.3	10
14	Prolactin Is Not Required for the Development of Severe Chronic Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2013, 191, 2082-2088.	0.8	25
15	Mast Cells in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2012, 13, 15107-15125.	4.1	33
16	Gender-based blood transcriptomes and interactomes in multiple sclerosis: Involvement of SP1 dependent gene transcription. Journal of Autoimmunity, 2012, 38, J144-J155.	6.5	43
17	The matricellular protein SPARC supports follicular dendritic cell networking toward Th17 responses. Journal of Autoimmunity, 2011, 37, 300-310.	6.5	29
18	Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient KitW-sh/W-sh mice. Laboratory Investigation, 2011, 91, 627-641.	3.7	61

Rosetta Pedotti

#	Article	IF	CITATIONS
19	Histamine regulates autoreactive T cell activation and adhesiveness in inflamed brain microcirculation. Journal of Leukocyte Biology, 2010, 89, 259-267.	3.3	21
20	Anaphylaxis to a self-peptide in the absence of mast cells or histamine. Laboratory Investigation, 2009, 89, 398-405.	3.7	9
21	Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood, 2009, 114, 2639-2648.	1.4	184
22	CD4+CD25+ Regulatory T Cells Specific for a Thymus-Expressed Antigen Prevent the Development of Anaphylaxis to Self. Journal of Immunology, 2008, 180, 4433-4440.	0.8	14
23	Endogenous Erythropoietin as Part of the Cytokine Network in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Molecular Medicine, 2008, 14, 682-688.	4.4	13
24	Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Annals of Neurology, 2007, 61, 219-227.	5.3	450
25	Delayed administration of erythropoietin and its non-erythropoietic derivatives ameliorates chronic murine autoimmune encephalomyelitis. Journal of Neuroimmunology, 2006, 172, 27-37.	2.3	103
26	A Key Regulatory Role for Histamine in Experimental Autoimmune Encephalomyelitis: Disease Exacerbation in Histidine Decarboxylase-Deficient Mice. Journal of Immunology, 2006, 176, 17-26.	0.8	75
27	Histamine in Immune Regulation: Possible Roles in Autoimmune Demyelinating Disease of the Central Nervous System. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2005, 4, 637-643.	0.4	2
28	Severe anaphylactic reactions to glutamic acid decarboxylase (GAD) self peptides in NOD mice that spontaneously develop autoimmune type 1 diabetes mellitus. BMC Immunology, 2003, 4, 2.	2.2	49
29	Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nature Biotechnology, 2003, 21, 1033-1039.	17.5	242
30	Involvement of both â€~allergic' and â€~autoimmune' mechanisms in EAE, MS and other autoimmune diseases. Trends in Immunology, 2003, 24, 479-484.	6.8	126
31	Response to Comment on "The Influence of the Proinflammatory Cytokine, Osteopontin, on Autoimmune Demyelinating Disease". Science, 2003, 299, 1845b-1845.	12.6	25
32	Multiple elements of the allergic arm of the immune response modulate autoimmune demyelination. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1867-1872.	7.1	121
33	Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nature Medicine, 2002, 8, 143-149.	30.7	372
34	Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Medicine, 2002, 8, 500-508.	30.7	1,558
35	The Influence of the Proinflammatory Cytokine, Osteopontin, on Autoimmune Demyelinating Disease. Science, 2001, 294, 1731-1735.	12.6	807
36	An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nature Immunology, 2001, 2, 216-222.	14.5	174