Eric Y Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11264102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Telecom-band hyperentangled photon pairs from a fiber-based source. Physical Review A, 2022, 105, .	2.5	8
2	Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source. , 2022, , .		1
3	Broadband fiber-based entangled photon-pair source at telecom O-band. Optics Letters, 2021, 46, 1261.	3.3	3
4	Real-time ultrasound sensing with a mode-optimized photonic crystal slab. Optics Letters, 2021, 46, 3372.	3.3	2
5	Recovering the full dimensionality of hyperentanglement in collinear photon pairs. Physical Review A, 2020, 101, .	2.5	5
6	Sensitizing an all-optical ultrasound sensor with a polymer overlayer. , 2020, , .		0
7	Identifying Optimal Photonic Crystal Sensor Designs with Machine Learning. , 2020, , .		Ο
8	Versatile Dispersion Measurement via a Reflective Nonlinear Interferometer. , 2020, , .		0
9	Entanglement TUning via Biphoton Beating. , 2020, , .		Ο
10	Dispersion measurement assisted by a stimulated parametric process. Optics Letters, 2020, 45, 2034.	3.3	2
11	Biphoton shaping with cascaded entangled-photon sources. Npj Quantum Information, 2019, 5, .	6.7	16
12	Toward a reconfigurable quantum network enabled by a broadband entangled source. Journal of the Optical Society of America B: Optical Physics, 2019, 36, B1.	2.1	20
13	Alignment-free dispersion measurement with interfering biphotons. Optics Letters, 2019, 44, 1484.	3.3	9
14	Refractive-index-based ultrasound sensing with photonic crystal slabs. Optics Letters, 2019, 44, 2609.	3.3	8
15	Franson interferometry with a single pulse. Frontiers of Optoelectronics, 2018, 11, 148-154.	3.7	1
16	Turn-key diode-pumped all-fiber broadband polarization-entangled photon source. OSA Continuum, 2018, 1, 981.	1.8	18
17	Polarization-entangled photon pair sources based on spontaneous four wave mixing assisted by polarization mode dispersion. Scientific Reports, 2017, 7, 5785.	3.3	15
18	Compensation-free broadband entangled photon pair sources. Optics Express, 2017, 25, 22667.	3.4	27

Егіс Ү Zhu

#	Article	IF	CITATIONS
19	Correlated photon pair generation in AlGaAs nanowaveguides via spontaneous four-wave mixing. Optics Express, 2016, 24, 3365.	3.4	31
20	Direct polarization-entangled Bell state generation via spontaneous four-wave mixing in AlGaAs waveguides. , 2016, , .		0
21	High-visibility two-photon interference of frequency–time entangled photons generated in a quasi-phase-matched AlGaAs waveguide. Optics Letters, 2014, 39, 5188.	3.3	20
22	High-purity, Broadband, Entangled Photon Pairs Generated in Poled Silica Fibers. , 2014, , .		0
23	Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a Ill–V chip. Applied Physics Letters, 2013, 103, .	3.3	30
24	Direct Generation of Polarization-Entangled Photon Pairs in a Poled Fiber. Physical Review Letters, 2012, 108, 213902.	7.8	59
25	Nonlinear Frequency Generation in Poled Fibers: From Sum-Frequency to Polarization-Entangled Photon Pairs. , 2012, , .		Ο
26	Nonlinear Frequency Generation in Poled Fibers: From Sum-Frequency to Polarization-Entangled Photon Pairs. , 2012, , .		0
27	Type II Parametric Downconversion in a Poled Fiber. , 2011, , .		Ο
28	Measurement of χ^(2) symmetry in a poled fiber. Optics Letters, 2010, 35, 1530.	3.3	31
29	Proposal for in-fiber generation of telecom-band polarization-entangled photon pairs using a periodically poled fiber. Optics Letters, 2009, 34, 2138.	3.3	20