Yuren Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11264060/publications.pdf

Version: 2024-02-01

304368 223531 2,248 54 22 46 citations h-index g-index papers 54 54 54 1548 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization. IEEE Transactions on Evolutionary Computation, 2017, 21, 131-152.	7.5	321
2	An Adaptive Tradeoff Model for Constrained Evolutionary Optimization. IEEE Transactions on Evolutionary Computation, 2008, 12, 80-92.	7.5	272
3	Multiobjective Optimization and Hybrid Evolutionary Algorithm to Solve Constrained Optimization Problems. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37, 560-575.	5.5	216
4	Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Structural and Multidisciplinary Optimization, 2009, 37, 395-413.	1.7	206
5	Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum. IEEE Access, 2019, 7, 37575-37586.	2.6	139
6	Runtime Analysis of an Ant Colony Optimization Algorithm for TSP Instances. IEEE Transactions on Evolutionary Computation, 2009, 13, 1083-1092.	7.5	104
7	Evolutionary Many-Objective Optimization Based on Dynamical Decomposition. IEEE Transactions on Evolutionary Computation, 2019, 23, 361-375.	7.5	81
8	A Many-Objective Evolutionary Algorithm With Pareto-Adaptive Reference Points. IEEE Transactions on Evolutionary Computation, 2020, 24, 99-113.	7.5	66
9	An elitism based multi-objective artificial bee colony algorithm. European Journal of Operational Research, 2015, 245, 168-193.	3.5	63
10	Configuring Software Product Lines by Combining Many-Objective Optimization and SAT Solvers. ACM Transactions on Software Engineering and Methodology, 2017, 26, 1-46.	4.8	55
11	A Scalar Projection and Angle-Based Evolutionary Algorithm for Many-Objective Optimization Problems. IEEE Transactions on Cybernetics, 2019, 49, 2073-2084.	6.2	53
12	Accelerating adaptive tradeâ€off model using shrinking space technique for constrained evolutionary optimization. International Journal for Numerical Methods in Engineering, 2009, 77, 1501-1534.	1.5	52
13	A Runtime Analysis of Evolutionary Algorithms for Constrained Optimization Problems. IEEE Transactions on Evolutionary Computation, 2007, 11, 608-619.	7.5	50
14	An orthogonal design based constrained evolutionary optimization algorithm. Engineering Optimization, 2007, 39, 715-736.	1.5	41
15	A dynamic multi-colony artificial bee colony algorithm for multi-objective optimization. Applied Soft Computing Journal, 2015, 35, 766-785.	4.1	39
16	Analysis of multiobjective evolutionary algorithms on the biobjective traveling salesman problem (1,2). Multimedia Tools and Applications, 2020, 79, 30839-30860.	2.6	39
17	Ranking Vectors by Means of the Dominance Degree Matrix. IEEE Transactions on Evolutionary Computation, 2017, 21, 34-51.	7.5	35
18	Performance Analysis of Evolutionary Algorithms for the Minimum Label Spanning Tree Problem. IEEE Transactions on Evolutionary Computation, 2014, 18, 860-872.	7.5	30

#	Article	IF	Citations
19	A Decomposition-Based Many-Objective Artificial Bee Colony Algorithm. IEEE Transactions on Cybernetics, 2019, 49, 287-300.	6.2	30
20	Constrained Multiobjective Optimization: Test Problem Construction and Performance Evaluations. IEEE Transactions on Evolutionary Computation, 2021, 25, 172-186.	7.5	28
21	A comparative runtime analysis of heuristic algorithms for satisfiability problems. Artificial Intelligence, 2009, 173, 240-257.	3.9	26
22	Evolutionary Bilevel Optimization Based on Covariance Matrix Adaptation. IEEE Transactions on Evolutionary Computation, 2019, 23, 258-272.	7.5	25
23	Learning Task Relationships in Evolutionary Multitasking for Multiobjective Continuous Optimization. IEEE Transactions on Cybernetics, 2022, 52, 5278-5289.	6.2	22
24	An angle based constrained many-objective evolutionary algorithm. Applied Intelligence, 2017, 47, 705-720.	3.3	21
25	An Evolution Path-Based Reproduction Operator for Many-Objective Optimization. IEEE Transactions on Evolutionary Computation, 2019, 23, 29-43.	7.5	19
26	Multi-objective and MGG evolutionary algorithm for constrained optimization. , 0, , .		17
27	A many-objective evolutionary algorithm based on a projection-assisted intra-family election. Applied Soft Computing Journal, 2017, 61, 394-411.	4.1	17
28	On the effectiveness of immune inspired mutation operators in some discrete optimization problems. Information Sciences, 2018, 426, 87-100.	4.0	15
29	Performance Analysis of ACO on the Quadratic Assignment Problem. Chinese Journal of Electronics, 2018, 27, 26-34.	0.7	15
30	Handling expensive multi-objective optimization problems with a cluster-based neighborhood regression model. Applied Soft Computing Journal, 2019, 80, 211-225.	4.1	13
31	Running Time Analysis of MOEA/D with Crossover on Discrete Optimization Problem. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 2296-2303.	3.6	13
32	Approximation and Parameterized Runtime Analysis of Evolutionary Algorithms for the Maximum Cut Problem. IEEE Transactions on Cybernetics, 2015, 45, 1491-1498.	6.2	12
33	A historical solutions based evolution operator for decomposition-based many-objective optimization. Swarm and Evolutionary Computation, 2018, 41, 167-189.	4.5	12
34	On the analysis of the $(1+1)$ evolutionary algorithm for the maximum leaf spanning tree problem. International Journal of Computer Mathematics, 2015, 92, 2023-2035.	1.0	11
35	Many-objective evolutionary algorithm based on adaptive weighted decomposition. Applied Soft Computing Journal, 2019, 84, 105731.	4.1	11
36	Runtime Analysis of Somatic Contiguous Hypermutation Operators in MOEA/D Framework. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 2359-2366.	3.6	11

#	Article	IF	CITATIONS
37	An adaptive parallel particle swarm optimization for numerical optimization problems. Neural Computing and Applications, 2019, 31, 6449-6467.	3.2	10
38	Performance Analysis of Evolutionary Algorithms for Steiner Tree Problems. Evolutionary Computation, 2017, 25, 707-723.	2.3	9
39	A Multiobjective Evolutionary Algorithm Based on Objective-Space Localization Selection. IEEE Transactions on Cybernetics, 2022, 52, 3888-3901.	6.2	7
40	A Multi-Objective Artificial Bee Colony Algorithm Combined with a Local Search Method. International Journal on Artificial Intelligence Tools, 2016, 25, 1650009.	0.7	6
41	Going deeper with optimal software products selection using many-objective optimization and satisfiability solvers. Empirical Software Engineering, 2020, 25, 591-626.	3.0	6
42	Approximation performance of ant colony optimization for the TSP(1,2) problem. International Journal of Computer Mathematics, 2016, 93, 1683-1694.	1.0	5
43	Runtime analysis of immune-inspired hypermutation operators in evolutionary multi-objective optimization. Swarm and Evolutionary Computation, 2021, 65, 100934.	4.5	5
44	Ant colony optimization for triple product property triples to fast matrix multiplication. Soft Computing, 2017, 21, 7159-7171.	2.1	3
45	A Comparison of GAs Using Penalizing Infeasible Solutions and Repairing Infeasible Solutions on Average Capacity Knapsack. , 2007, , 100-109.		3
46	Search-based diverse sampling from real-world software product lines. , 2022, , .		3
47	The analysis of expected fitness and success ratio of two heuristic optimizations on two bimodal MaxSAT problems. Journal of Global Optimization, 2012, 54, 745-764.	1.1	2
48	Success rates analysis of three hybrid algorithms on SAT instances. Swarm and Evolutionary Computation, 2017, 34, 119-129.	4.5	2
49	A local search based restart evolutionary algorithm for finding triple product property triples. Applied Intelligence, 2018, 48, 2894-2911.	3.3	2
50	A set of new multi- and many-objective test problems for continuous optimization and a comprehensive experimental evaluation. Artificial Intelligence, 2019, 276, 105-129.	3.9	2
51	Towards efficiently searching triple product property triples: Deterministic and randomized algorithms. Applied Soft Computing Journal, 2019, 75, 349-357.	4.1	1
52	An improved (1+1) evolutionary algorithm for k-median clustering problem with performance guarantee. Physica A: Statistical Mechanics and Its Applications, 2020, 539, 122992.	1.2	1
53	Approximation Performance of the $(1+1)$ Evolutionary Algorithm for the Minimum Degree Spanning Tree Problem. Communications in Computer and Information Science, 2015, , 505-512.	0.4	1
54	Analysis of Solution Quality of a Multiobjective Optimization-Based Evolutionary Algorithm for Knapsack Problem. Lecture Notes in Computer Science, 2015, , 74-85.	1.0	0