Wei-Chiang Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11262255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of an Orally Effective Factor IX-Transferrin Fusion Protein for Hemophilia B. International Journal of Molecular Sciences, 2020, 21, 21.	4.1	31
2	Biodistribution, activation, and retention of proinsulin-transferrin fusion protein in the liver: Mechanism of liver-targeting as an insulin prodrug. Journal of Controlled Release, 2018, 275, 186-191.	9.9	9
3	Acid-sensitive hybrid polymeric micelles containing a reversibly activatable cell-penetrating peptide for tumor-specific cytoplasm targeting. Journal of Controlled Release, 2018, 279, 147-156.	9.9	61
4	Characterization and Oral Delivery of Proinsulin-Transferrin Fusion Protein Expressed Using ExpressTec. International Journal of Molecular Sciences, 2018, 19, 378.	4.1	10
5	Single chain Fc-dimer-human growth hormone fusion protein for improved drug delivery. Biomaterials, 2017, 117, 24-31.	11.4	8
6	Tissue barriers and novel approaches to achieve hepatoselectivity of subcutaneously-injected insulin therapeutics. Tissue Barriers, 2016, 4, e1156804.	3.2	13
7	Proinsulin–Transferrin Fusion Protein Exhibits a Prolonged and Selective Effect on the Control of Hepatic Glucose Production in an Experimental Model of Type 1 Diabetes. Molecular Pharmaceutics, 2016, 13, 2641-2646.	4.6	8
8	Selective Intracellular Delivery of Recombinant Arginine Deiminase (ADI) Using pH-Sensitive Cell Penetrating Peptides To Overcome ADI Resistance in Hypoxic Breast Cancer Cells. Molecular Pharmaceutics, 2016, 13, 262-271.	4.6	47
9	Antibody-Drug Conjugates: A Historical Review. AAPS Advances in the Pharmaceutical Sciences Series, 2015, , 3-7.	0.6	5
10	Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery. Frontiers of Chemical Science and Engineering, 2015, 9, 407-427.	4.4	40
11	Interaction between Cell-Penetrating Peptides and Acid-Sensitive Anionic Oligopeptides as a Model for the Design of Targeted Drug Carriers. Molecular Pharmaceutics, 2014, 11, 1583-1590.	4.6	37
12	Tumor targeting of a cell penetrating peptide by fusing with a pH-sensitive histidine-glutamate co-oligopeptide. Biomaterials, 2014, 35, 4082-4087.	11.4	42
13	Fatty acids as therapeutic auxiliaries for oral and parenteral formulations. Advanced Drug Delivery Reviews, 2013, 65, 1331-1339.	13.7	43
14	Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 2013, 65, 1357-1369.	13.7	1,273
15	Pharmacokinetics of recombinant bifunctional fusion proteins. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 581-595.	3.3	28
16	MAP-mediated nuclear delivery of a cargo protein. Journal of Drug Targeting, 2012, 20, 329-337.	4.4	11
17	Vesicle-to-cytosol transport of disulfide-linked cargo mediated by an amphipathic cell-penetrating peptide. Journal of Drug Targeting, 2012, 20, 793-800.	4.4	12
18	Characterization of transferrin receptor-mediated endocytosis and cellular iron delivery of recombinant human serum transferrin from rice (Oryza sativaL.). BMC Biotechnology, 2012, 12, 92.	3.3	23

Wei-Chiang Shen

#	Article	IF	CITATIONS
19	Recombinant peptide constructs for targeted cell penetrating peptide-mediated delivery. Journal of Controlled Release, 2012, 158, 357-361.	9.9	30
20	Effects of Receptor Binding on Plasma Half-Life of Bifunctional Transferrin Fusion Proteins. Molecular Pharmaceutics, 2011, 8, 457-465.	4.6	31
21	Receptor-mediated activation of a proinsulin-transferrin fusion protein in hepatoma cells. Journal of Controlled Release, 2011, 155, 386-392.	9.9	16
22	The influence of net charge and charge distribution on cellular uptake and cytosolic localization of arginine-rich peptides. Journal of Drug Targeting, 2011, 19, 675-680.	4.4	24
23	Transferrin Receptor–Mediated Transcytosis in Intestinal Epithelial Cells for Gastrointestinal Absorption of Protein Drugs. , 2010, , 31-52.		1
24	Design of an in vivo cleavable disulfide linker in recombinant fusion proteins. BioTechniques, 2010, 49, 513-518.	1.8	55
25	Human growth hormone–transferrin fusion protein for oral delivery in hypophysectomized rats. Journal of Controlled Release, 2010, 141, 177-182.	9.9	87
26	Insertion of the Designed Helical Linker Led to Increased Expression of Tf-Based Fusion Proteins. Pharmaceutical Research, 2009, 26, 523-528.	3.5	121
27	Disulfide and thioether linked cytochrome c-oligoarginine conjugates in HeLa cells. International Journal of Pharmaceutics, 2009, 369, 79-84.	5.2	14
28	Conjugation with Cationic Cell-Penetrating Peptide Increases Pulmonary Absorption of Insulin. Molecular Pharmaceutics, 2009, 6, 492-503.	4.6	52
29	Nuclear Localization of Cell-Penetrating Peptides Is Dependent on Endocytosis Rather Than Cytosolic Delivery in CHO Cells. Molecular Pharmaceutics, 2009, 6, 337-344.	4.6	51
30	Molecular and Functional Expression of Multidrug Resistance-Associated Protein-1 in Primary Cultured Rat Alveolar Epithelial Cells. Journal of Pharmaceutical Sciences, 2008, 97, 2340-2349.	3.3	9
31	Lipidization of human interferon-alpha: A new approach toward improving the delivery of protein drugs. Journal of Controlled Release, 2008, 129, 11-17.	9.9	24
32	Reversible lipidization of somatostatin analogues for the liver targeting. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 615-620.	4.3	8
33	Tyrphostin A8 stimulates a novel trafficking pathway of apically endocytosed transferrin through Rab11-enriched compartments in Caco-2 cells. American Journal of Physiology - Cell Physiology, 2008, 294, C7-C21.	4.6	6
34	Accumulation of transferrin in Caco-2 cells: A possible mechanism of intestinal transferrin absorption. Journal of Controlled Release, 2007, 122, 393-398.	9.9	19
35	Cell Penetrating Peptides: Intracellular Pathways and Pharmaceutical Perspectives. Pharmaceutical Research, 2007, 24, 1977-1992.	3.5	398
36	Reversible lipidization for the oral delivery of leu-enkephalin. Journal of Drug Targeting, 2006, 14, 127-136.	4.4	49

Wei-Chiang Shen

#	Article	IF	CITATIONS
37	Membrane Transduction of Oligoarginine in HeLa Cells Is Not Mediated by Macropinocytosis. Molecular Pharmaceutics, 2006, 3, 181-186.	4.6	33
38	Improving the Oral Efficacy of Recombinant Granulocyte Colony-Stimulating Factor and Transferrin Fusion Protein by Spacer Optimization. Pharmaceutical Research, 2006, 23, 2116-2121.	3.5	108
39	Comparison of monomeric and oligomeric transferrin as potential carrier in oral delivery of protein drugs. Journal of Controlled Release, 2005, 106, 273-286.	9.9	38
40	Cytosolic delivery of a p16-peptide oligoarginine conjugate for inhibiting proliferation of MCF7 cells. Journal of Controlled Release, 2005, 108, 409-417.	9.9	21
41	Reversible Lipidization Prolongs the Pharmacological Effect, Plasma Duration, and Liver Retention of Octreotide. Pharmaceutical Research, 2005, 22, 220-227.	3.5	37
42	Recombinant granulocyte colony-stimulating factor-transferrin fusion protein as an oral myelopoietic agent. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7292-7296.	7.1	117
43	Evidence that membrane transduction of oligoarginine does not require vesicle formation. Experimental Cell Research, 2005, 307, 164-173.	2.6	47
44	The Transepithelial Transport of a G-CSF-Transferrin Conjugate in Caco-2 Cells and Its Myelopoietic Effect in BDF1 Mice. Pharmaceutical Research, 2004, 21, 278-284.	3.5	20
45	Transferrin-Oligomers as Potential Carriers in Anticancer Drug Delivery. Pharmaceutical Research, 2004, 21, 1985-1992.	3.5	16
46	Transcytosis of GCSF-transferrin across rat alveolar epithelial cell monolayers. Pharmaceutical Research, 2003, 20, 1231-1238.	3.5	44
47	Oral peptide and protein delivery: unfulfilled promises?. Drug Discovery Today, 2003, 8, 607-608.	6.4	81
48	Reversible lipidization for the oral delivery of salmon calcitonin. Journal of Controlled Release, 2003, 88, 369-380.	9.9	114
49	Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochemical and Biophysical Research Communications, 2003, 307, 241-247.	2.1	78
50	Structure-activity relationship of reversibly lipidized peptides: studies of fatty acid-desmopressin conjugates. Pharmaceutical Research, 2002, 19, 609-614.	3.5	46
51	Tyrphostin-8 enhances transferrin receptor-mediated transcytosis in Caco-2- cells and inreases hypoglycemic effect of orally administered insulin-transferrin conjugate in diabetic rats. , 2001, 18, 191-195.		31
52	Gastric retention and stability of lipidized Bowman–Birk protease inhibitor in mice. International Journal of Pharmaceutics, 2000, 204, 111-116.	5.2	22
53	Title is missing!. Journal of Inorganic and Organometallic Polymers, 2000, 10, 93-101.	1.5	16
54	Preparation, purification, and characterization of a reversibly lipidized desmopressin with potentiated anti-diuretic activity. Pharmaceutical Research, 1999, 16, 1674-1679.	3.5	44

WEI-CHIANG SHEN

#	Article	IF	CITATIONS
55	Comparison of pharmacokinetic parameters of a polypeptide, the Bowman-Birk protease inhibitor (BBI), and its palmitic acid conjugate. Pharmaceutical Research, 1996, 13, 1373-1377.	3.5	20
56	Transcellular Delivery of an Insulin-Transferrin Conjugate in Enterocyte-like Caco-2 Cells. Journal of Pharmaceutical Sciences, 1996, 85, 1306-1311.	3.3	82
57	Carbamylation Decreases the Cytotoxicity but not the Drug-Carrier Properties of Polylysines. Journal of Drug Targeting, 1995, 2, 469-475.	4.4	25
58	The Establishment of Polarity and Enhanced Transcytosis of Transferrin Receptors in Enterocyte-like Caco-2 Cells. Journal of Drug Targeting, 1994, 2, 93-99.	4.4	32
59	(C) Means to enhance penetration. Advanced Drug Delivery Reviews, 1992, 8, 93-113.	13.7	51
60	Transcellular Transport of Protein—Polymer Conjugates in Cultured Epithelial Cells. ACS Symposium Series, 1991, , 117-127.	0.5	1
61	Isolation of variants of chinese hamster ovary cells with abnormally low levels of CSH: Decreased ability to cleave endocytosed disulfide bonds. Journal of Cellular Physiology, 1991, 149, 60-65.	4.1	9
62	Acid-sensitive dissociation between poly(lysine) and histamine-modified poly(glutamate) as a model for drug-releasing from carriers in endosomes. Biochimica Et Biophysica Acta - General Subjects, 1990, 1034, 122-124.	2.4	14
63	Methotrexate-poly(lysine) as a selective agent for mutants of chinese hamster ovary cells defective in endocytosis. Journal of Cellular Physiology, 1988, 135, 277-284.	4.1	21
64	Stable variant of LM fibroblast defective in fluid-phase but competent in receptor-mediated endocytosis. Journal of Cellular Physiology, 1988, 137, 490-496.	4.1	3
65	Altered endocytosis in a mutant of LM fibroblasts defective in cell-cell fusion. Journal of Cellular Physiology, 1986, 126, 161-166.	4.1	5
66	Tumor location and drug targeting using a monoclonal antibody (anti-SSEA-1) and antigen-binding fragments. Journal of Surgical Oncology, 1986, 31, 1-12.	1.7	20
67	The cellular uptake of horseradish peroxidase and its poly(lysine) conjugate by cultured fibroblasts is qualitatively similar despite a 900-fold difference in rate. Journal of Cellular Physiology, 1982, 113, 167-178.	4.1	59
68	Cis-aconityl spacer between daunomycin and macromolecular carriers: A model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate. Biochemical and Biophysical Research Communications, 1981, 102, 1048-1054.	2.1	267
69	Conjugation of methotrexate to poly (L-lysine) as a potential way to overcome drug resistance. Cancer, 1980, 45, 1207-1211.	4.1	55